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Abstract

Scheduling is the key to the performance of grid work-
flow applications. Various strategies are proposed, includ-
ing static scheduling strategies which map jobs to resources
before execution time, or dynamic alternatives which sched-
ule individual job only when it is ready to execute. While
sizable work supports the claim that the static schedul-
ing performs better for workflow applications than the dy-
namic one, it is questioned how a static schedule works ef-
fectively in a grid environment which changes constantly.
This paper proposes a novel adaptive rescheduling concept,
which allows the workflow planner works collaboratively
with the run time executor and reschedule in a proactive
way had the grid environment changes significantly. An
HEFT-based adaptive rescheduling algorithm is presented,
evaluated and compared with traditional static and dynamic
strategies respectively. The experiment results show that the
proposed strategy not only outperforms the dynamic one but
also improves over the traditional static one. Furthermore
we observed that it performs more efficiently with data in-
tensive application of higher degree of parallelism.

1 Introduction

Typically a workflow application is a set of jobs which
are coordinated by control and data dependencies to accom-
plish a complex task. It is popular in scientific computa-
tion and becomes even more widely accepted thanks to the
growing popularity of grid computation. In general, a sci-
entific workflow application can be represented as a direct
acyclic graph (DAG), where the node is the individual job
and edge represents the inter-job dependence. Both nodes
and edges are weighed for computation cost and communi-
cation cost respectively. The makespan, which is the total
time needed to finish the entire workflow, is used to measure
the performance of workflow applications.
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One of the key functions of a workflow management sys-
tem on grid is to schedule and manage the jobs on shared
resources to achieve high performance. When it comes to
system implementation, the workflow planner and execu-
tor are two core components in terms of how the resource
mapping decision is made and how job is scheduled. Ex-
isting systems are going into two different extremes [6].
Some systems use static approaches, i.e., fully plan ahead,
by which the planner makes the global decisions in favor
of entire workflow performance relying on knowledge of
the entire DAG and execution environment. Others depend
on the workflow executor to make decision for each indi-
vidual job only when it becomes ready to execute. This
type of decision is also referred to as local just-in-time de-
cision. Among the performance driven DAG-based grid
workflow systems, DAGMan [8] and Taverna [13] support
dynamic scheduling, GridFlow [3] supports static schedul-
ing, and Pegasus [16] supports both. It is believed that sta-
tic strategy can potentially perform near optimal, and this
is also proven true with some real world workflow appli-
cations [20]. The simulation work [2] further suggests that
static approaches still perform better than dynamic ones for
data intensive workflow applications even with inaccurate
information about future jobs.

However, in a grid environment static strategies may per-
form poorly because of the grid dynamics: resource can join
and leave at any time; individual resource capability varies
over time because of internal or external factors; and it is not
easy to accurately estimate the communication and compu-
tation cost of each job, which is the foundation of any static
scheduling. Recent work [7, 18, 11] shows that schedul-
ing through resource reservation and performance modeling
can help to ensure the resource availability during executing
and theoretically make the grid more predictable, but their
approaches do not solve all the problems.

We argue that the promising benefits of static strate-
gies can be practically realized with collaboration between
workflow planner and executor, which is currently missed
in most system designs. This paper proposes an HEFT [19]
based adaptive rescheduling algorithm to support such de-



sired collaboration. With this approach, the executor will
notify the planner of any run time event which interests the
planner, for example, resource unavailability or discovery
of new resource. In turn, the planner responds to the event
by means of evaluating the event and rescheduling the re-
maining jobs in the workflow if necessary. Planning is now
an iterative (event-driven) activity instead of one time task.
The experiment results, including simulation on both para-
metric randomly generated DAGs and two real application
DAGs, show a considerable performance improvement by
adaptive rescheduling.

The contributions of this paper are: (1) propose an adap-
tive rescheduling approach; (2) evaluate the performance of
dynamic strategy when resource change is considered, and
observe that traditional static strategy still performs better;
and (3) study how the adaptive rescheduling improves over
traditional static strategy when resource pool changes over
time. In the simulation with two real world workflow ap-
plications, BLAST [17] and WIEN2K [21], we found that
our approach outperforms the traditional static approach by
20.4% and 6.1% respectively.

The rest of the paper is organized as follows. Related
work is discussed in Section 2. Then we describe an adap-
tive rescheduling approach in Section 3. Section 4 elabo-
rates the experiment design, and evaluates the performance
of adaptive rescheduling. Finally, we summarize and lay
out the future work in Section 5.

2 Related Work

Job scheduling problem is an NP-Complete problem [9],
it is extensively studied and various heuristics are pro-
posed in the literature. HEFT (Heterogenous Earliest Finish
Time) [19] is one of the most popular heuristics, it is im-
plemented in the grid project ASKALON [20] and proven
superior to other alternatives. Some other heuristics are
studied in a comprehensive evaluation [10], and surpris-
ingly they show a very similar behavior regarding the qual-
ity of the obtained results, exhibiting the same strengths and
weaknesses, differing only by few percent. Based on these
observations, HEFT heuristic is selected in this paper to im-
plement the adaptive rescheduling algorithm.

The challenge of scheduling grid workflow application
with static strategy is discussed in research [6], but few re-
search efforts address them. Rescheduling is implemented
in the GrADS [1], where it is normally activated by con-
tract violation. However, the efforts are all conducted for it-
erative applications, allowing system to perform reschedul-
ing decisions at each iteration [5]. The plan switching ap-
proach [22] is to construct a family of activity graphs be-
forehand and investigates the means of switching from one
member of the family to another when the execution of
one activity graph fails, but all the plans are made without

knowledge about the future environment change.
Another rescheduling policy is proposed in [14], which

considers rescheduling at a few, carefully selected points
during the execution. The research tackles one of the short-
comings that static scheduling always assumes accurate pre-
diction of job performance. After the initial schedule is
made, it selectively reschedules some jobs if the run time
performance variance exceeds predefined threshold. How-
ever, this approach deals with only the inaccurate estimation
and does not consider the change of resource pool.

As a complementary research to the above, we focus
on how the workflow planner adapts to the resource pool
change. For example, when the new resources are discov-
ered, the planner will evaluate whether these extra resources
can be utilized to achieve better performance and resched-
ule the remaining jobs if necessary.

3 Adaptive Rescheduling

Even though theoretically static scheduling performs
near to optimal, its effectiveness in a dynamic grid envi-
ronment is questioned. We discuss and analyze these issues
in the beginning of this section, and propose a static strategy
based novel adaptive rescheduling algorithm by which the
workflow planner can adapt to the grid dynamics to achieve
its strength practically.

3.1 Issues with Static Scheduling

Planning is a one time activity in the traditional static
scheduling paradigm. It does not consider the future change
of grid environment after the resource mapping is made. On
the other hand, rescheduling in execution phase is proposed
but mainly used to support fault tolerance. Overall, the
issues with traditional static scheduling are: (1) Accuracy
of estimation. Estimating communication and computation
costs of a DAG is the key success factor but practically diffi-
cult. The deviation in run time is detrimental to scheduling
based scheduling. (2) Adaptation to dynamic environment.
Most static scheduling approaches assume that resource set
is given and fixed over time. The assumption is not always
valid even with the reservation capability in place. More-
over, the static scheduling approach can not utilize new re-
sources after the plan is made; and (3) Separation of work-
flow planner from executor. Fundamentally the above two
issues are related to the lack of collaboration between the
workflow planner and executor. With collaboration, a plan-
ner will be aware of the grid environment change, including
the job performance variance and resource availability, and
is able to adaptively reschedule based on the increasingly
accurate estimations. This approach can both continuously
improve performance by considering the new resources and
minimize the impact caused by unexpected resource down-
grade or unavailability.



3.2 System Architecture

We propose a system design which adapts the Planner
to dynamic grid environment via collaboration with the Ex-
ecutor, as shown in Fig. 1. The system consists of two main
components Planner and Executor. The GRID Services on
top of which the Executor is built, is a collection of essential
services for any grid system and not the focus of this paper.
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Figure 1. The diagram of the system design.

The capabilities of each system components are defined
as below:

Planner. The Planner has a collective set of subcom-
ponents, including Scheduler, Performance History Repos-
itory and Predictor. For each workflow application rep-
resented as a DAG, the Planner instantiates a Scheduler
instance. Based on the performance history and resource
availability, the Scheduler inquires the Predictor to estimate
the communication and computation cost with the given re-
source set. It then decides on resource mapping, with the
goal of achieving optimal performance for entire workflow,
and submits the schedule to the Executor. During the ex-
ecution, the Scheduler instance listens to the pre-defined
events of interest, for example, addition of new resources
and significant variance of job performance, evaluates the
event and reschedules the application if necessary. In the
mean time, the Scheduler updates the Performance History
Repository with the latest job performance information to
improve the estimation accuracy subsequently. As each in-
stance of Scheduler manages an individual DAG, it will fo-
cus on the events specifically associated with the DAG it
manages to continuously improve the makespan. By col-
lectively working with other instances of Scheduler, this
multiple-instance scheme can further improve the overall
system performance.

Executor. The Executor is an enactment environment
for workflow applications, can be further decomposed into
Execution Manager, Resource Manager and Performance
Monitor according to their respective roles in the run time

environment. The Executor supports advance reservation of
resources. The Execution Manager receives the DAG and
executes it as scheduled. It is also responsible for getting
job input file ready and executing the job on mapped re-
source. Upon arrival of a schedule, the Resource Manager
will reserve the resource as per the schedule. If the arriv-
ing schedule is a result of rescheduling, it revokes resource
reservation for replaced schedule before making new reser-
vations. As part of the collaboration, the Resource Manager
and Performance Monitor update the Planner with informa-
tion and event subscribed by the Planner.

3.3 Adaptive Scheduling

We present the basic idea of adaptive scheduling in
this subsection, followed by a detailed algorithm based on
HEFT [19] in the next subsection. For a given DAG and a
set of currently available resources, the Planner makes the
initial resource mapping as any other traditional static ap-
proaches do. The primary difference is that our approach
requires the Planner listens for and adapts to the significant
events in the execution phase, such as:

• Resource Pool Change. If new resource is discovered
after the current plan is made, rescheduling may re-
duce the makespan of a DAG by considering the re-
source addition. When resource fails, fault tolerant
mechanism is triggered and it is taken care of by Exe-
cution Manager. However, if the failure is predictable,
rescheduling can minimize the failure impact on over-
all performance.

• Resource Performance Variance. The performance es-
timation accuracy is largely dependent on history data,
and inaccurate estimation leads to a bad schedule. If
the run time Performance Monitor can notify the Plan-
ner of any significant performance variance, the Plan-
ner will evaluate its impact and reschedule if neces-
sary. In the meantime, the Performance History Repos-
itory is updated to improve the estimation accuracy in
the subsequent planning.

The Planner reacts to event by evaluating if makespan
can be reduced by rescheduling. For example, if a new re-
source becomes available, the Planner will evaluate if a new
schedule with the extra resource in consideration can pro-
duce smaller makespan. If so, the Planner will replace the
current one with new one by submitting it to the Executor.

The evaluation can be further extended to support online
system management function by answering the “What...if...”
type query, for example, “What will be the expected per-
formance if an additional resource A is added (removed)?”
The query result, as evaluation output, will help one to tune
up the application and system performance in a proactive
way, and this will be our future work.



A generic adaptive rescheduling algorithm is described
in Fig. 2. For a given DAG, at initial time or when an
event occurs during its execution, the Planner schedules
or evaluates the event by (re)scheduling. The Planner re-
trieves the latest resource information and job performance
history data first, and estimates the cost of each job in the
DAG. Based on the estimation, the Planner applies a spe-
cific static heuristic, for example HEFT, either makes an
initial schedule for the entire DAG or a new schedule for
the remaining jobs. If the schedule is an initial one or it is
expected to perform better than the current one, the Planner
submits it to the Executor to execute, otherwise the Planner
does not take any action. Until the DAG is executed suc-
cessfully, the scheduler keeps listening for the event of in-
terest, evaluate it and reschedule the DAG if necessary. S0

and S1 denotes the scheduler and rescheduler respectively.

T - set of the jobs in the DAG
R - set of all available resources
P - performance estimation matrix
H - Heuristic employed by scheduler
S - Schedule        

1.   set initial schedule S0 = null
2.   while ((S0==null OR any event) AND DAG  not finished) do
      #R is updated via the communication with Resource Manager
3.   update Resource Set R;
4.   update Performance History Repository;
      #Predicator component will update performance estimation matrix P
5. call P=estimate(T, R);
      #New schedule is made by applying the heuristics H on execution 

status snapshot of S0 and P
6.   call S1=schedule(S0, P, H);
7.   if (S0==null OR S0.makespan>S1.makespan)
8.  S0=S1;
9.  submit S0;
10. endif
11.  endwhile

Figure 2. A generic adaptive rescheduling al-
gorithm.

3.4 HEFT-based Adaptive Rescheduling:
AHEFT

Next we define our own adaptive scheduling strategy,
which is an HEFT-based adaptive rescheduling algorithm,
referred to as AHEFT hereafter. Specifically, we use HEFT
heuristic to implement the schedule(S0, P, H) method in
the generic algorithm described in Fig. 2. For consistence
purposes, we directly use the scheduling system model de-
fined in paper [19] with revision and extension. A workflow
application is represented by a direct acyclic graph, G=(V,
E), where V is the set of v jobs (nodes) and E is the set of
e edges between jobs. Each edge (i, j) ∈ E represents the
precedence constraint such that job ni should complete its
execution before job nj starts. data is a v × v matrix of

communication data, where datai,k is the amount of data
required to be transmitted from job ni to job nk. R is a set
of resources which represent computation units. The vari-
able clock is used as logical clock to measure the time span
of DAG execution, it is initially set as 0 when the DAG starts
to execute. When the DAG finishes successfully, the clock
reads as the makespan of the DAG.

we define the symbols used by AHEFT in Table 1, and
formulate the calculation of these attributes by these three
equations, whose rationale are described next.

FEA(nm,ni,rj ,S0,clock)=


AFT (nm), Case1

clock+cm,i, Case2

SFT (nm), Case3

SFT (nm)+cm,i, otherwise.
(1)

wherein,

Case 1: If job nm finished and S0 maps job nm to rj ;

Case 2: If job nm finished and S0 does not map job nm

to rj .

Case 3: If job nm has not finished and S1 maps job nm to
rj .

EST (ni,rj ,S0,clock,R)=

max{avail[j],maxnm∈pred(ni)(FEA(nm,ni,rj ,S0,clock))}

(2)

and

EFT (ni,rj ,S0,clock,R)=wi,j+EST (ni,rj ,S0,clock,R) (3)

A job can not start without all required inputs available
on the resource on which the job is to execute. Such inputs
are in turn the outputs from immediate predecessor jobs.
If a job ni will execute on resource rj and requires output
data from an immediate preceding job nm, the Equation (1)
calculates the earliest time when output data arrives on re-
source rj . By the time of (re)scheduling, clock, if job nm

already finishes on resource rj then its output is ready there
as input for job ni, and the FEA equals AFT (nm). If job
nm finishes but on different resource, then its output has to
transfer to resource rj . As the file transmission can not be
earlier than clock, the FEA is equal to clock + cm,i. If a
job nm has not finished by clock, it will be rescheduled by
rescheduler S1, as applied to the rest of cases.

On the other hand, a job can not execute before the ear-
liest available time avail[j] for resource rj . These con-
straints are indicated by the inner max block in Equation
(2). It is easy to get the earliest finish time of job ni by



Table 1. Definition of attributes in AHEFT
Attribute Definition
EST (ni, rj , S0, clock, R) the earliest start time for not-started job ni on resource rj with available resource set R when the

schedule S0 is executed to the time point of clock

EFT (ni, rj , S0, clock, R) the earliest finish time for not-started job ni on resource rj with available resource set R when the
schedule S0 is executed to the time point of clock

FEA(nm, ni, rj , S0, clock) the earliest time for file output of job nm being available on resource rj ready for job ni after schedule
S0 has been executed to the time point of clock

SFT (ni) scheduled finish time of job ni when it is mapped to a resource
AST (ni) actual start time of job ni

AFT (ni) actual finish time of job ni

avail[j] the earliest time when resource ri is ready for job execution
wi,j the computational cost of job ni on resource rj

ci,j the communication cost for data dependence of job nj on ni

pred(ni) the set of immediate predecessor jobs of job ni

adding the estimated execution time wi,j to its earliest start
time. After a job ni is scheduled on resource rj , the earliest
finish time for job ni on resource rj is denoted as SFT (ni),
the scheduled finish time of job ni. Finally the makespan is
defined as,

makspan = max{SFT (nexit)} (4)

where nexit is the exit job in a DAG. There can be one or
multiple exit jobs in one DAG.

It is obvious that AHEFT is identical to HEFT [19] when
clock = 0 or it is the initial scheduling, i.e. S0 is not defined
yet. The primary difference comes to the rescheduling when
AHEFT considers the fact that workflow has been executed
partially. In Equation (1), the FEA can be actual available
time if by the time of rescheduling, i.e., clock, the immedi-
ate predecessor job finishes and output file is moved or to
be moved to the resource as previously scheduled. How-
ever, previous schedule may direct the output file to differ-
ent resource, then the file needs to be retransmitted to this
resource regardless, which falls into the second situation in
Equation (1). The third one is the same as HEFT, if either
this is initial scheduling or the immediate predecessor job
has not started yet. With these equations now we can define
the procedure schedule(S0, P, H) of AHEFT, see Fig. 3.

Except for how EFT is calculated, the procedure
schedule(S0, P, H) defined in Fig. 3 is very similar to
HEFT. Based on the cost estimation obtained, i.e., line 5
in Fig. 2, the upward rank of a job ni is recursively defined,
starting from the job nexit, by [19]

ranku(ni) = wi + max
nj∈succ(ni)

(c(i,j) + ranku(nj)) (5)

where succ(ni) is the set of immediate successors of job ni,
c(i,j) is the average communication cost of edge (i, j), and
wi is the average computation cost of job ni. For the exit
job nexit, the upward rank value is defined as

ranku(nexit) = wexit (6)

T - set of the jobs of status not started in DAG
R - set of all available resources 
P - performance estimation matrix
H - HEFT heuristic employed by scheduler
S0 - Initial schedule 
clock - the time point of scheduling 

1. procedure schedule(S0, P, H)
2. compute ranku for all jobs by traversing graph upward, starting 

from the exist job
3. sort the jobs in a scheduling list by nonincreasing order of ranku
4. while there are unscheduled jobs in the list do
5. select the first job, ni from the list of scheduling
6. for each resource rk in R do
7. compute EFT(ni, rk , S0, clock, R) 
8. assign job ni to the resource rj that minimizes EFT of job ni
9. endwhile

Figure 3. Procedure schedule(S0, P, H) of
AHEFT.

As indicated by line 2 and 3 in Fig. 3, the upward rank
is calculated for each job and sorted in nonincreasing order
which corresponds to significance order how the individual
job affects the final makespan. The basic concept of this al-
gorithm is to select the “best” resource which minimizes the
earliest finish time of the job currently with highest upward
rank and remove the job from unscheduled job list once it
is assigned with resource. The resource selection process
repeats until the list is empty.

As an illustration, we use a sample DAG and resource
set, shown in Fig. 4, to compare schedule performance of
traditional HEFT and AHEFT. Fig. 5 shows the schedule
obtained from traditional HEFT and AHEFT respectively.
Resources r1, r2 and r3 are available from the beginning,
while resource r4 emerges at time point of 15. HEFT pro-
duces the schedule with makespan as 80 without consider-
ing the addition of resource r4 at later time. For AHEFT,



the initial schedule made at time point of 0 is identical as
the one by HEFT. However, when resource r4 is added,
HEFT reschedules the rest of the workflow, i.e. all jobs
but n1 which is finished by the time of rescheduling. The
new schedule reduces the makespan to 76.

4 Experiment Design and Results

In this section, we present the experiment design for
evaluating the effectiveness of AHEFT. We first evalu-
ate it with randomly generated DAGs. Then we specif-
ically compare it with traditional HEFT in the context
of two real world applications, namely BLAST [17] and
WIEN2K [21].

4.1 Experiment Design

The following important assumptions are made for the
experiment design: (1) Accuracy of estimation. As other
studies [2, 14, 19], the estimation of communication and
computation cost is assumed accurate and job will start and
finish on time; (2) File transferring. For static approaches,
when a job finishes, the output file of the job is transmit-
ted immediately to the resources where the immediate suc-
ceeding jobs are scheduled to execute on. But for dynamic
one the output file is not transmitted until the Executor de-
cides on which resource to run the depending job. In both
cases, the file transmission is time consuming only activ-
ity and does not incur computation cost; and (3) Advance
resource reservation. We assume the advance reservation
capability ensures resource availability during the reserved
time window. On the other hand, HEFT and AHEFT re-
act identically to the resource failure while job is executing,
as if rescheduling is the fault tolerance mechanism. There-
fore, to simplify the experiment design, we can reasonably
only consider the situation that new resources come avail-
able during the execution of workflow.

4.2 Results of Parametric Randomly Gen-
erated DAGs

In order to evaluate the performance and stability of
AHEFT, i.e., whether it always performs better than HEFT
and dynamic one in all kinds of cases, we use parametric
randomly generated DAGs in the experiment. For the pur-
pose of fair comparison, we directly follow the heteroge-
neous computation modeling approach defined in [19] to
generate representative DAG test cases. The input parame-
ters and the corresponding values are very similar as used
in [19] as well. These input parameters are also suggested
in the workflow test bench work[10], as listed below:

• The number of jobs in the graph (υ).

• The maximum out edges of a node, out degree, rep-
resented as percentage of total nodes in a DAG.

• Communication to computation ratio (CCR). A
data-intensive application has a higher CCR, while a
computing-intensive one has a lower value.

• The resource heterogenous factor, β. A higher value
of β suggests the bigger difference of resource capa-
bility. The resources are homogeneous when β is 0.
The average computation cost of all jobs in a DAG is
ωDAG, then the average of each job ni in the graph,
represented as ωi, is selected randomly from a uniform
distribution with range [0, 2× ωDAG]. Then, the com-
putation cost of each job ni on each resource rj in the
system, i.e., ωi,j , is randomly selected from the fol-
lowing range: ωi × (1− β

2 ) ≤ ωi,j ≤ ωi × (1 + β
2 ).

Table 2. Parameter values of random gener-
ated DAGs.

Parameter Value
υ 20, 40, 60, 80, 100
CCR 0.1, 0.5, 1.0, 5.0, 10.0
out degree 0.1, 0.2, 0.3, 0.4, 1.0
β 0.1, 0.25, 0.5, 0.75, 1.0
R 10, 20, 30, 40, 50
∆ 400, 800, 1200, 1600
δ 0.10, 0.15, 0.20, 0.25

To model the dynamic change of resources, we intro-
duce three additional parameters as following: (1) Initial
resource pool size, R; (2) Interval of resource change, ∆.
The higher value of ∆ indicates the lower frequency of re-
source change; and (3) Percentage of resource change, δ,
to measure the resource change percentage each time com-
pared with the initial resource pool. The value set for each
parameter of this empowerment is listed in Table 2.

With combination of v, CCR, out degree and β, we
have totally 625 different DAG types. For each type we cre-
ate 10 instances with randomly assigned computation and
communication cost, so there are totally 6250 DAGs used
in the experiment. Then we apply 80 different types of re-
source models, combining the R,∆ and δ, so we finally
generate 500,000 test cases. For each DAG, we simulate
HEFT [19], AHEFT and dynamic Min-Min [4] heuristic
and obtain the respective makespan. The simulation for dy-
namic Min-Min is implemented on top of the event-driven
simulation framework SimJava [15].

The average makespan for HEFT, AHEFT and Min-Min
are 4075, 3911 and 12352 respectively. It shows that both
HEFT and AHEFT achieve much better performance than
Min-Min, and AHEFT is slightly better than HEFT. We fur-
ther compare AHEFT and HEFT to identify which type of
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Table 3. Improvement rate with various CCRs.

CCR 0.1 0.5 1.0 5.0 10.0
Imprv. rate 0.4% 0.5% 0.7% 3.2% 7.7%

workflow applications can benefit more from AHEFT by
studying the effect of different parameters. Given the lim-
ited space, we show the results of CCR and the number of
jobs in Table 3 and Table 4 respectively. One can easily no-
tice that AHEFT favors data-intensive workflow application
by Table 3. When CCR increases, i.e., application is more
data-intensive, AHEFT outperforms HEFT better. Another
observation is, with the total number of jobs increases, the
improvement rate jumps initially and becomes stable later,
as Table 4 shows.

It is worth noting that these observations are drawn from
the experiments with randomly generated DAGs of limited

Table 4. Improvement rate with various total
number of jobs.

Job number 20 40 60 80 100
Imprv. rate 2.9% 3.9% 4.3% 4.2% 4.1%

scale (less or equal to 100 jobs). To better understand the
correlation between AHEFT and workflow application char-
acteristics, we evaluate with two real world applications in
the next subsection.

4.3 Results of BLAST and WIEN2K

We attribute the less significance of the performance im-
provement in randomly generated DAGs to two observa-
tions below: 1) DAG shape. Typically a scientific work-
flow application is designed to accomplish a complex task



by means of job parallelism, its DAG is hence uniquely
shaped. The DAGs of many real world workflow appli-
cations are well balanced and highly parallel, like Mon-
tage [12], BLAST [17] and WIEN2K [21], and so forth.
Moreover, the DAG shape decides the job parallelism de-
gree to some extent; 2) Types of jobs in the DAG. Despite
of the fact that one scientific workflow is composed of hun-
dreds individual jobs if not thousands, there are only hand-
ful unique operations. For example, Montage has totally 11
unique executable operations. The same operation appears
as different individual jobs in the DAG when it is executed
in different context with different inputs. This observation
holds same true with BLAST and WIEN2K applications.
Fig. 6 gives a six-step BLAST workflow example with two-
way parallelism. This workflow represents a set of function
calls that specify inputs such as genome sequence files, out-
put files from comparative analysis tools, and textual para-
meters. We conduct the simulation with 200-, 400-, 600-
, 800- and 1000-way parallelism respectively. With these
two observations we choose BLAST and WIEN2K DAGs
to evaluate how well adaptive rescheduling may improve
practically and how its effectiveness is related to the DAG
characteristics. BLAST and WIEN2K are implemented in
grid system GNARE [17] and ASKALON [20] respectively.

WIEN2k [21] is a quantum chemistry application devel-
oped at Vienna University of Technology. WIEN2k work-
flow contains two parallel sections LAPW1 and LAPW2,
with possibly multiple parallel tasks. The DAG we used for
experiment is a full-balanced graph, with equal number of
parallel jobs in these two sections, as shown in Fig. 7. In the
experiment, we set the number of parallel tasks as 200, 400,
600, 800, 1000 respectively. The parallelism factor used in
both BLAST and WIEN2K actually decides the total num-
ber of jobs in the DAG. We define the value set for each

Inputfile.1

compbio:FileBreaker/ID001

jobNo_1_1.Block2 jobNo_1_1.Block2

compbio:FileBreaker/ID006 compbio:FileBreaker/ID006

out.jobNo_1_1.Block2 out.jobNo_1_1.Block2

compbio:FileBreaker/ID007 compbio:FileBreaker/ID007

parse.out.jobNo_1_1.Block2 parse.out.jobNo_1_1.Block2

compbio:FileBreaker/ID012

outfile.jobNo_1_1.Block2

Figure 6. A six-step BLAST workflow with
two-way parallelism [17]. The rectangle rep-
resents a job and the parallelogram repre-
sents data file.
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Figure 7. A full-balanced WIEN2K DAG exam-
ple [20].

parameter of experiment with both BLAST and WIEN2K
in Table 5. Table 6 shows the average makespan improve-

Table 5. Parameter values of BLAST and
WIEN2K DAGs.

Parameter Value
υ 200, 400, 600, 800, 1000
CCR 0.1, 0.5, 1.0, 5.0, 10.0
β 0.1, 0.25, 0.5, 0.75, 1.0
R 20, 40, 60, 80, 100
∆ 400, 800, 1200, 1600
δ 0.10, 0.15, 0.20, 0.25

Table 6. Average makespan and improvement
rate by AHEFT.

Application HEFT AHEFT Improvement rate
BLAST 4939.3 3933.1 20.4%
WIEN2K 3451.6 3233.8 6.3%

ment by AHEFT over BLAST and WIEN2K respectively.
The results again assert that the effectiveness of adaptive
rescheduling is very sensitive to the parallelism degree of
DAGs, which in turn relates to the DAG shape, well corre-
sponding to our observation mentioned earlier of this sec-
tion. For the DAGs with shape like BLAST, AHEFT can
help to reduce makespan by 20.4% on average when new
resources are added to the system periodically. But it only
improves a little with the WIEN2K DAG. The difference
is understandable if one notices that the parallelism degree
of WIEK2K is obviously lower than that of BLAST, so
that any additional resource is less likely utilized and con-
tributes less to the performance improvement. Despite of
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Figure 8. Relationship of average makespan and different parameters. HEFT1: applying HEFT on
BLAST DAG, AHEFT1: applying AHEFT on BLAST DAG, HEFT2: applying HEFT on WIEN2K DAG,
IHEFT2: applying AHEFT on WIEN2K DAG.

the high parallelism degree in each of two sections (LAPW1
and LAPW2) of WIEN2K DAG, the job LAPW2 FERMI is
the single job on its level, which reduces the parallelism
significantly because any job in the LAPW2 section can not
start until this job finishes. It is easy to conceive that ex-
tra resources can not help a single job if it can only uti-
lize one resource at a time, which leaves other available re-
sources idle. We further study the correlation between the
performance improvement rate and DAG parameters and
show them in Fig. 8 from six perspectives: (a) Relation-
ship of makespan and CCR; (b) Relationship of makespan
and β; (c) Relationship of makespan and total number of
jobs; (d) Relationship of makespan and initial resource pool
size; (e) Relationship of makespan and resource change
frequency and (f) Relationship of makespan and resource

change percentage. To better illustrate how AHEFT im-
proves the schedule variously with different DAG parame-
ters, Fig. 8 presents the results of HEFT and AHEFT for
both BLAST and WIEN2K, where HEFT1 and AHEFT1
represent application of HEFT and AHEFT on BLAST re-
spectively, similarly HEFT2 and AHEFT2 represent for ap-
plication of HEFT and AHEFT on WIEN2K respectively.
The improvement rate increases as the DAG gets more com-
plex, i.e., the total number of jobs gets bigger, as Table 7
and Fig. 8(c) show. This holds true for both BLAST and
WIEN2K applications, and the rate accelerates faster with
WIEN2K than BLAST. It implies that adaptive reschedul-
ing is more effective for more complex DAGs. When CCR
goes up, the improvement rate increases slightly as well,
as shown in Fig. 8(a). However the improvement rate in-



creases with BLAST when CCR is bigger but is stable for
WIEN2K as Table 8 shows. As one can tell by Fig. 8(d), the
smaller the initial resource pool is the better AHEFT outper-
forms HEFT. But once the initial resource is big enough,
the improvement rate becomes stable. Another observation
is that, the more dynamic the grid environment is, i.e.,the
more frequent the new resource is available, the more effi-
cient AHEFT can be. Lastly, the improvement rate is not
very sensitive to the parameter of β, i.e., the resource het-
erogeneous factor, and the percentage of resource change,
as Fig. 8(b) and Fig. 8(f) illustrate respectively.

Table 7. Improvement rate with various total
number of jobs.

Application 200 400 600 800 1000
BLAST 15.9% 18.3% 19.9% 21.9% 23.6%
WIEN2K 2.2% 4.3% 6.0% 7.8% 9.4%

Table 8. Improvement rate with various CCRs.

Application 0.1 0.5 1.0 5.0 10.0
BLAST 16.1% 15.5% 14.3% 19.1% 26.1%
WIEN2K 7.3% 7.3% 6.6% 5.3% 6.4%

Overall, the adaptive rescheduling algorithm AHEFT
outperforms the traditional HEFT significantly, and it does
even better for workflow applications of high complexity,
data intensiveness and parallelism degree in the circum-
stances of high dynamics and low initial resources, which
are exactly the essential characteristics of scientific work-
flow applications on grids.

5 Summary and Future Work

This paper analyzes both the benefits and issues of sta-
tic scheduling strategy for grid workflow applications, and
proposes a novel adaptive rescheduling strategy. The new
approach not only addresses the issues with traditional sta-
tic scheduling but also further exploits its inherent benefits.
AHEFT is developed and tested for its stability and effec-
tiveness with various DAGs, and the results are promising.

In the future, we will continue working on the design and
implementation of the collaboration system model proposed
in this paper in both Wayne State University Grid system
and TeraGrid. We also intend to integrate the rescheduling
with advance resource reservation and resource availability
prediction model to implement the collaboration.
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