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Abstract

In battery powered systems such as wireless sensor net-
works, energy efficiency is one of the most important system
design goals. In this paper, energy efficiency is examined
from the perspective of data consistency, which includes both
temporal consistency and numerical consistency, and con-
siders the application specific requirements of the data and
data dynamics in the data field. We first formally define the
energy-efficiency problem with the goal of delivering a min-
imum number of messages under the constraint of data con-
sistency. Then, we give the formal definition of the data con-
sistency. To achieve both consistency and energy efficiency,
we propose a data collection protocol named Alep, which
adapts the data sampling rate to the data dynamics in the
data field and keeps lazy when the data consistency is main-
tained. From the results of a comprehensive simulation we
find that the proposed approach indeed reduces the number
of delivered messages by more than 20%, and improves the
accuracy of the sampled data.

1 Introduction

With the development of technologies in micro-sensor
and wireless communication, wireless sensor networks
(WSN) have become a very hot research field in last five
years [2]. Micro sensors such as Motes are developed to
make WSN applications possible; TinyOS [3, 5] is designed
to provide system support for operating sensors; and lots
of efficient protocols are proposed to make the sensor sys-
tem workable. Thus, Applications such as habitat monitor-
ing [15], and environment sampling [1] have been launched,
showing the promise of wide deployments of WSN.

Because of the special characteristics of WSN such as
limited power supply, restricted computing and storage ca-
pability, previous efforts in WSN are mainly focus on de-
signing an energy efficient sensor system. These approaches
including [7, 11, 16, 17], achieve energy efficiency by tak-
ing energy-efficient paths or increasing the sleep time of sen-
sors. Several recent work from database filed tries to achieve
energy-efficient by adapting the sample rate [4, 7, 8] and fil-
tering unnecessary sampled data [10, 14]; however, a model

to measure the quality of collected data is missed in their
work. We argue that a model for the quality of collected data,
such as a data consistency model, is essential in WSN appli-
cations. Furthermore, the energy efficiency problem should
be revisited by considering data consistency.

We model data consistency, including temporal consis-
tency and numerical consistency, based on two factors, spe-
cific application requirements to the sampled data and the
feature of data dynamics in the sensor field, and we examine
the effect of consistency in data operations from the angle
of energy efficiency in a scenario of a data collection ap-
plication. Having known that the major goal of a WSN is
to collect consistent data and energy is mostly consumed in
the data transmission and idle listening, we use the number
of delivered messages to evaluate energy efficiency property.
Thus, we first model the energy efficient data collection prob-
lem with the goal of delivering a minimum number of mes-
sages under the constraints of the data consistency. Then,
an adaptive, lazy, energy-efficient data collection protocol
named Alep is designed to support the goal of data consis-
tency and to take advantage of data consistency. The basic
idea of our protocol is three-fold: (1) adapting the data sam-
pling rate of each sensor to the data dynamics in the data field
based on a reinforce learning strategy; (2) reducing the num-
ber of total transmitted messages by dropping the data when
data consistency is maintained; (3) reducing the number of
total transmitted messages by aggregating and delaying the
data reporting as much as possible.

The contributions of this paper are listed as three aspects.
First, consistency requirements and data dynamics and their
relation with energy consumption of WSN applications are
analyzed. A formal model for data consistency in WSN is
proposed. To our knowledge, we are the first to consider
the formal model for data consistency in WSN. Second, an
adaptive lazy protocol is proposed to reduce the number of
delivered messages and to save energy. Finally, a compre-
hensive simulation is designed and implemented based on
TOSSIM [5] to validate the effectiveness and efficiency of
the proposed protocol by considering both non-aggregation
and aggregation cases.

The rest of this paper is organized as follows. We first
analyze data consistency requirements from specific appli-



cations and the feature of data dynamics in Section 2. In
Section 3 we formally model the data collecting problem
and present the formal definition for data consistency and
data dynamics. An adaptive lazy energy-efficient protocol
for data collection is described in Section 4. The compre-
hensive performance evaluation for the proposed protocol is
reported in Section 5. Finally, related work and conclusion
are listed in Section 6 and Section 7 respectively.

2 Consistency Requirements and Data Dy-
namics

WSNs are mostly application-specific systems that are
widely used in various scenarios, and different applications
have different requirements to the data consistency. Besides,
WSNs are also data-centric systems, so that data consistency
is closely related with data dynamics in the data field. In this
section, we analyze different data consistency requirements
and the feature of data dynamics.

Basically, the data consistency requirements in WSN con-
sist of two aspects: temporal consistency which means that
the data should be delivered to sink before it is expected and
numerical consistency which requires that the collected data
should be accurate. Some systems pay more attention to the
temporal consistency and others care more about the numeri-
cal consistency. For example, in a patient monitoring system,
emergency conditions of a patient should be reported to the
control panel or caregivers in a limited time. Otherwise, the
patient may be in a dangerous condition. Thus, most systems
that need quick response or have high real-time requirements
usually have high requirements on the temporal consistency.
Other systems may have no strict time requirements on the
collected data. For instance, a system that is counting the
number of passed vehicles in one area may only need the
data to be reported every long period, e.g., twice every day.
However, these kinds of systems may have high requirements
on the accuracy of the collected data, e.g., recording totally
80 and 90 vehicles may differ a lot. Thus in WSN system de-
sign, temporal consistency and numerical consistency should
both be adjusted carefully in terms of energy-efficiency and
application requirements.

The data consistency should also be integrated with the
feature of data dynamics. Here, data dynamics means the
trend and frequency of data changing. Usually, the data dy-
namics comes from two dimensions, temporal data dynamics
and spatial data dynamics. In the temporal dimension, data
changing frequency varies at different time periods. Figure 1
shows the data changing in terms of the time. In the figure,
the data changes very fast before time t1 and between time
t2 and t3, while it keeps almost stable between time t1 and
time t2. Thus, if we keep the constant data sampling rate,
the different data consistency will get during different peri-
ods with various data dynamics. On the other hand, from
the spatial dimension, the data dynamics differs from area
to area. An example of data changing differing spatially is

shown in Figure 2, where, the data changes quickly in the
right part of the sensor field and slowly in the left part. If
we use the same data sampling rate in different locations, we
will get different data accuracy, i.e., the collected data may
be accurate in the area with low data dynamics, but not accu-
rate for the area with high data dynamics. Furthermore, the
temporal data dynamics and spatial data dynamics effect the
data consistency at the same time. Thus to collect consistent
data, the data sampling rate should be adapted to the feature
of data dynamics from time to time and from area to area,
e.g., it should sample more data when the data dynamics is
high and in the area with high data dynamics, while sample
less data when data dynamics is low and in the area with low
data dynamics.

t1 t2 t3

value

Figure 1. Data dynamics with the time.

Figure 2. Data dynamics in different lo-
cation.

Having known that data consistency should take consid-
eration both specific application requirements to data and the
feature of data dynamics, next, we explore the effect of data
consistency in the data collection in WSN.

3 Formal Consistency Models

We examine the effect of consistency in data operations
from the angle of energy efficiency in a scenario of a data
collection application. Noting that most energy is consumed
in message transmission and idle listening, we want to save
energy by reducing the number of delivered messages, which



can not only save energy from sending and receiving mes-
sages but also increase possible sleeping time. In this section,
we first model the energy efficiency data collection problem
integrating data consistency, then we give the formal models
for data consistency and data dynamics.

3.1 Problem Definition and System Level Data
Consistency

We model the energy-efficient data collecting problem as
the problem with the goal of reducing the total delivered mes-
sages meanwhile keeping the data consistency. So the prob-
lem can be modeled as the following,

obj. min
∑n

i=1 mi −−−−−−−−−−−−− (1)
s.t. T (rijk)− t(rijk) ≥ 0,−−−−−−−− (C1)∑n

i=1

∑nm
j=1

∑dpm
k=1 (rijk − eijk)2 ≤ C −−(C2)

where the goal of the model is to minimize the number of
delivered messages; the first condition, C1, implies the tem-
poral consistency, i.e., the message should be delivered to
the sink before it is expected, and the second condition, C2,
shows the numerical consistency, i.e., the maximum variance
of the collected data should not exceed the upbound of the
application consistency requirements to the data as denoted
as C, which is specified by applications. n is the total num-
ber of sensors; nm is the number of messages sampled at
each sensor and dpm is the number of data in each message.
mi is the number of messages delivered at node i; rijk and
eijk are the real and estimated value of the kth reading in the
jth message at node i accordingly. T (rijk) is the expected
deadline for reading rijk while t(rijk) is the time the reading
arrives at the sink.

Here the energy efficient data collection problem is mod-
eled in a centralized way, i.e, the data consistency is mea-
sured centrally at the sink at system level; however, in WSN,
a totally distributed environment, the data transmission deci-
sion is made locally at each sensor, so it is better to achieve
the global goal locally with local goal and local constraints
on data consistency which is depicted in next subsection.

3.2 Model for Individual Sensors
We convert the system level model for problem to the

model at individual sensor level, i.e., each sensor intends
to reduce the number of delivered messages, and keeps the
requirements of data freshness and value accuracy. So the
problem model for each individual sensor can be,

obj. minmi −−−−−−−−−−−−− (2)
s.t. T (rijk)− t(rijk) ≥ t(is),−−−−−(C3)∑nm

j=1

∑dpm
k=1 (rjk − ejk)2 ≤ Ci −−− (C4)

where the goal is to minimize the number of delivered mes-
sages at each sensor; the first condition implies the time con-
sistency, and the second condition shows the numerical con-
sistency, Ci is an application-specific consistency threshold

at sensor level. mi is the total number of the messages de-
livered by one sensor; t(is) is the upbound of the estimated
time needed to deliver the message from node i to the sink;
rjk and ejk are the real and estimated value of kth reading in
the jth message separately. Next, we show that the problem
modeled at sensor level is a subset of the problem modeled
in system level.

Theorem 1 Solutions for the problem defined in the sen-
sor level model are solutions of the problem defined in the
system level model.

Proof. First, we show that if the objective of the sensor
level model is minimized, the objective of the system level
model is also minimized. Assuming Si is the result for indi-
vidual model, thus, Si = minmi. Assume S is the result for
the system model, S = min

∑n
i=1 mi =

∑n
i=1 min(mi) =∑n

i=1 Si. Thus, the system objective is the sum of the indi-
vidual objectives. If the individual objective is achieved, the
system objective can be achieved.

Second, we check two conditions in both models. We
show that if the conditions hold in the sensor level model,
they hold in the system level model as well. For the tempo-
ral consistency constraint, we can see that in the sensor level
model the temporal consistency constraints are expressed as
T (rijk)− t(rijk) ≥ t(is). If we let i = s in C3, we can see
that T (rijk) − t(rijk) ≥ t(ss), which is exactly C1, where
t(ss) = 0, so if C3 holds, C1 holds.

For the numerical consistency constraint, we can show
that if we select small enough value of Ci for each sen-
sor, we can guarantee that if C4 holds, C2 holds. In C2,∑n

i=1

∑nm
j=1

∑dpm
k=1 (rijk − eijk)2 ≤

∑n
i=1 Ci. Here, if we

have
∑n

i=1 Ci ≤ C holds and C4 holds, C2 must hold. The
easiest way to choose each Ci is to make Ci ≤ C

n , where n
is the number of sensors. Thus if we choose sufficient small
value for each Ci in sensor level model, we can guarantee to
satisfy the second condition in the system level model.

From above analysis, we can find that the global optimiza-
tion problem can be converted to a local optimization prob-
lem. Now our aim is to minimize the number of delivered
messages and to satisfy the data consistency constraints at
each sensor. Actually, consistency requirements should be
refined to the sensing data level in a real WSN system.

3.3 Model for Data Items without Aggregation

In the previous model, we specify the data consistency
requirement of each sensor. However, in a multimodality
application, one sensor may deliver multiple messages with
multimodality data, such as temperature, light, pressure, and
so on. We argue that multimodality is a common case, and
not an abnormal for future WSN applications. Thus, even
one delivered message may contain several pieces of sensing
data and these data may have different requirements on data
consistency; furthermore, the data aggregation functions usu-
ally distinguish and operate only on the same type of sensing
data. Thus, data consistency constraints should be refined to



the level of each piece of sensing data. Here, we formally
model the data consistency for each piece of data as follows:

Consist(p)di = Acc(p)di&OnTm(p)di

where Acc(p)di specifies the numerical consistency of the
dith data of monitoring parameter p, and OnTm(p)di de-
notes the timeliness property of that data. This model means
that the data is consistent if and only if the it maintains nu-
merical consistency and temporal consistency. The models
for both consistency are listed as follows.

Acc(p)di =
{

1 |EV (p)di − V (p)di| ≤ C(p)s−bnd

0 otherwise

where EV (p)di and V (p)di are the estimated value and real
value of the dith sensing data for p, and C(p)s−bnd is the
numerical consistency bound for p.

OnTm(p)di =
{

1 Tdue(p)di − Ts(p)di ≤ ET (p)di

0 otherwise

where, Ts(p)di is the time that the message will be delivered
and Tdue(p)di is the time when the sink expected to receive
the data; and ET (p)di is the estimated time to deliver the
message from current sensor to the sink.

Similar to the proof in Section 3.2, we can easily prove
that if we can guarantee the consistency at each sensing data,
we can guarantee the consistency at each sensor and further
the consistency at the whole WSN. For example, if we make
C(p)s−bnd ≤ Ci

nm∗dpm , where nm ∗ dpm is the total number
of sensing data sent at sensor i, the numerical consistency
requirement at sensor i will be satisfied.

3.4 Model for Data Items with Aggregation
Data aggregation is a common way in WSN to reduce the

number of delivered messages. Having consistency model
for single data, we also need to define a consistency model
for aggregated data. Similar to the consistency model for
a single data, the consistency model for aggregated data is
also application-specific and related with different parame-
ters. The difference of two consistency models for single
data and aggregated data is that there is an aggregated func-
tion operating on a set of data in the case of aggregation. So
the data consistency model for aggregated data is defined as
follows:

Consist(p)di = Acc(p)di&OnTm(p)di

Acc(p)di =
{

1 |f(p, EDdi)− f(p, Ddi)| ≤ C(p)a−bnd

0 otherwise

OnTm(p)di =

 1 Tdue(f(p, Ddi))− Ts(f(p, Ddi))
≤ ET (f(p, Ddi))

0 otherwise

where f is the aggregation function such as average, sum,
count, and so on; p is the specific parameter; Ddi and EDdi

are the real and estimated value for the dith data set sep-
arately; f(p, Ddi) and f(p, EDdi) are the real and esti-
mated aggregated value for the dith data set separately; and
C(p)a−bnd is the numerical consistency bound for parameter
p. Tdue, Ts and ET have the same meaning as before.

3.5 Model for Data Dynamics
Data consistency reflects the accuracy of the data and the

staleness of the data. We envision that the data accuracy is
closely related with the data sampling rate. For a series of
n sensing data, if we get every piece of data, the accuracy is
the best by using reading values as estimation values. If we
get readings in a half frequency, the accuracy will decrease
since we have to estimate half of the data. On the other hand,
the energy is saved from sampling and reporting less data.
Thus data sampling rate should be decided by making trade-
off between the data accuracy and energy efficiency, which,
we argue that, can be achieved by matching data sampling
rate to data dynamics.

To describe data dynamics in the monitoring field, we de-
fine a number of windows to observe the data readings. Two
parameters, winSize and winNum are defined to model the
dynamics of data. winSize denotes the number of readings
in one window, and winNum specifies the number of win-
dows in one observation. Thus the total number of readings
in one observation is Numrd = winSize∗winNum. Since
data dynamics reflects the frequency of the data changing, so
we first define the frequency of the data changing as the num-
ber of data changing in one observation:

Numchg = {Cnt(i)‖ri+1 − ri| > B&i ∈ [0 : Numrd]}

where, Cnt(i) is the number of is satisfying the conditions;
ri and ri+1 are the ith and i + 1th readings separately.
And B = C(p)bnd is the accuracy bound for this parame-
ter. Based on this definition, we define the data dynamics
(DY N ) as the average number of changing in one monitor-
ing window.

DY N =
Numchg

Numrd
∗ winSize

From above definition, we can find that data dynamics is
defined based on time period, i.e., inside the window of ob-
servation. By adjusting the value of winSize and winNum,
we can get the data dynamics with various sensitivity. Based
on data dynamics, it is possible for users to choose suitable
data sampling rate to accurately collect data in an energy ef-
ficient way, which will be explained in detail in Section 4.

In our design, both concepts of data consistency and data
dynamics are data-centric and application-specific. First,
both of them are directly related with the value and staleness
of sensor reading. Second, the applications can choose suit-
able data consistency model to meet their specific data con-
sistency requirements by setting specific consistency bounds
and choose different values for winSize and winNum to



estimate the data dynamics. Furthermore, our models to cal-
culate the data consistency and data dynamics are full decen-
tralized, i.e., data dynamics and sampling rate is calculated
at each sensor, thus it is easy to be applied in WSN.

4 ALEP: An Adaptive, Lazy, Energy-efficient
Protocol

In this paper, we intend to save energy by estimating the
value of the sensing data so that to reduce the number of
delivered messages. Our proposed Alep protocol consists
of three components, adapting the sampling rate based on
the data dynamics and resource availability, keeping lazy in
transmission based on consistency-guaranteed estimations,
and aggregating and using long length packet. These meth-
ods are described in detail in the following subsections.

4.1 Adapting the Sample Rate
We adapt the sampling rate based on the model for data

dynamics defined in previous sections. The process of adapt-
ing the sampling rate is a process of reinforce learning based
on the data reading. Based on the value of DY N , we can
define the adaption of the sampling rate as

Rsmp =

{
dDY N−Avechg

Dfbnd
e ∗Rcr, DY N > Avechg

Avechg−DY N
Dfbnd

∗Rcr, DY N ≤ Avechg

where, Rsmp is the adapted sampling rate; Rcr is the current
sampling rate. Avechg is the normal average changes happen
in one window size; and Dfbnd bounds maximum difference
between the observed value of data dynamics and the normal
average changes, i.e., if DY N is larger than Avechg and the
difference exceeds the bound, the sampling rate should be in-
creased; when DY N is much smaller than Avechg , the sam-
ple rate should be decreased. Different applications could
define their specific up-bound and low-bound of the suitable
sampling rate. However, these bounds cannot exceed the
maximum bound and minimum bound. Here we define the
maximum bound of the sampling rate as the maximum band-
width of the sensor and the minimum bound of the sampling
rate as the smallest sampling rate that satisfies the Nyquist-
Shannon sampling theorem [9].

The sampling rate learns from the previous data dynam-
ics, and uses the most recent data dynamics to estimate the
nearest future data dynamics. We believe that in most cases
the data dynamics will not change dramatically. The data
history is limited by the number of windows and the window
size in one observation. We can adjust the length of history
based on the window size and the number of windows.

4.2 Keeping Lazy in Transmission
One way to reduce the number of delivered messages is

to keep lazy in transmission, i.e., only sending the messages
that are necessary to be sent because we think that if the re-
ceiver can estimate an accurate enough value for the current

reading, the message need not to be sent, i.e., if the data con-
sistency requirement can be hold, the messages are not nec-
essary to be sent.

In this protocol, every sensor caches the last transmitted
reading for every parameter for all potential senders that may
deliver message to it, and it uses the cached values as the esti-
mation of the current reading. To check the data consistency
for this piece of data, the sensor will use the current reading
as the real value and the cached value as the estimated value.
If the difference between the current reading and the cached
value is within the consistency bound, the sender will not
send this piece of data, i.e., keeping lazy. For example, in an
application which monitors the temperature of a sensor field,
when a sensor gets a reading of value 3.7, and the cached last
reading is 3.5 which is within the consistency bound of 0.3.
So the new reading is not necessary to be sent. When the
current data reading is absent, the sensor assumes the value
is unchanged so that it keeps silent. This approach has two
advantages: easier to estimate the undelivered data locally
and only keeping copy of a very small amount of data.

In the case of the aggregated data, every receiver caches a
copy of the latest aggregated value calculated from senders.
After it applies the aggregation function, it will compare the
new calculated value with the cached value. If the difference
between them is within the consistency bound, the sender
will keep silent. For the aggregated data, the receiver has
to wait for the new reading from all the senders for a pe-
riod of time. If there are still data absent from some senders,
the receiver will use the cached data to substitute the current
reading and calculate the new aggregated value.

4.3 Aggregating and Delaying Delivery

Another aspect of the Alep protocol is to integrate sev-
eral pieces of data into one message to reduce the number of
messages and delay the delivery when the data temporal con-
sistency is not violated. In our design, each sensor maintains
a data queue where the received data are stored. The data
in the queue are sorted according to the application specific
priority and the requirement of temporal consistency. When
there are free space in the queue and the consistency is sat-
isfied, the sensor will keep sleeping instead of sending data
to its parent node. The temporal consistency is checked by
comparing the estimated time to deliver the message to the
sink and the time the data is expected at the sink. In our ap-
plication, the expected time to deliver the message to the sink
can be estimated based on the number of hops to the sink.
For example, if we assume it takes Tdev to transmit one mes-
sage from the child to the parent, then we can estimate the
time it takes for current sensor to deliver a message to sink
is Tdev × Hjs, where Hjs is the number of hops from the
current sensor to the sink. Then the time bound for the data
is the sum of the estimated time plus one time slot, which
denotes the time between two reporting points according to
the TDMA schedule. More discussions of the protocol can



be found at [12].

5 Performance Evaluation

To evaluate the performance of the proposed adaptive,
lazy, energy-efficient protocol, we have implemented the
protocol in TinyOS using the TOSSIM [5] environment. In
the rest of this section, we will describe the simulation setup
and the performance metrics first, then present the perfor-
mance of our protocol in terms of these performance metrics.

5.1 Simulation Setup and Evaluation Metrics
In our simulation, 121 nodes are distributed in a circle

area, with the base station located at the center of the circle
area. All these nodes are connected to for a balanced tree
with height of four, i.e., the depth of the tree, where all the
internal nodes have three children. The sensors periodically
collect data from its children and report the readings to its
parent based on a TDMA schedule.

Each sensor node acts as a multiple functional sensor,
which can sample three parameters: Temperature as Temp,
Pressure as Press, and Rain-index as Humid. To evalu-
ate the proposed protocol in different data dynamics envi-
ronments, we intentionally make these three parameters have
different dynamic characteristics. For example, for the per-
spective of temporal, the reading always changes fast for
Temp, relatively stable for Press, while fast at first then
stable for Humid. To simulate spatial data dynamics, we in-
tentionally separate the whole area according to three tree of
the root. The reading changes fast in the left subtree area, rel-
atively stable in the right subtree area, and fast at first period
then becomes stable in the middle subtree area.

The goal of the Alep protocol is to save energy by reduc-
ing the number of delivered messages while satisfying the
data consistency requirements. Thus, we use two metrics
to evaluate our approach. To measure the reduction of the
number of delivered messages, we count the total number of
messages that have been sent at each sensor.

To answer the question of the effect of reduced messages
to the data consistency, we propose a new performance met-
ric called data inconsistency factor (DIF), which is defined
as the total variance between the gathered data in the sink and
real data, i.e., V =

∑n
1 (drcv − dfld)2, where, V is the value

of variance; drcv and dfld are the reading value received at
sink and the real value sampled at data field separately. The
more accurate the data, the smaller the variance.

5.2 Number of Delivered Messages
Usually collecting more data is a way to improve data

consistency; however, by adapting the sampling rate to fit the
feature of data dynamics and keeping lazy when data is in the
range of consistency, data accuracy can be improved with-
out significantly increase the number of delivered messages.
Moreover, in some cases when data dynamics is low, data
consistency can be kept even by delivering fewer number of

messages. In this section, we show the number of messages
delivered at each sensor using different approaches.

Figure 3 and 4 list the number of delivered messages at
each sensor without and with aggregation respectively. The
x-axis is the ID of sensors, and the y-axis denotes the num-
ber of delivered messages. Note that the y-axis of the two
figures are at different scales. As a matter of fact, the num-
ber of delivered messages for all approaches reduces signif-
icantly when aggregation is used. From the two figures, we
can see that Simple delivers the maximum number of mes-
sages and Lazy transfers the minimum number of messages
in both cases of with and without aggregation.

These three approaches have totally different performance
in terms of the number of delivered messages. In the case of
without data aggregation shown in Figure 3, the sensors are
classified to four types based on the layer in the tree using
Simple, i.e., sensors in the same layer using Simple deliver
the same number of messages. However, using Alep and
Lazy, the sensors transmit different number of messages be-
cause of the various data dynamics in the different areas. For
example, among sensors located at layer 3, sensors with ID
between 13 and 21 transfer 140 messages because the high
data dynamics of the monitoring area, while the sensors with
ID between 31 and 39 only deliver 41 messages because the
low data dynamics of the monitoring area, which is fewer
than 1

3 of that in the high dynamics area. The similar results
exist in the case with data aggregation in Figure 4, where all
the sensors deliver the same number of messages using Sim-
ple, while the sensors using Alep and Lazy located at different
areas transmit different number of messages, i.e., the sensors
located at high dynamics area deliver 57 messages but the
sensors located at low dynamics area only send 9 messages.

Comparing with Lazy, we observe that the sensors using
Alep send more number of messages than using Lazy at the
area with high data dynamics (e.g., node 13 – 21) but send
fewer number of messages than that of using Lazy at the area
with low data dynamics (e.g., node 31 – 39). This is because
the sampling rate is increased much in the area with high
data dynamics and decreased a lot in the area with low data
dynamics. From above analysis, we conclude that Lazy can
always reduce the number of delivered messages, and Alep
usually does not increase the number of delivered messages
and reduce the number of delivered messages a lot when the
data dynamics is low.

5.3 Data Inconsistency Factor

From the above section, we can see that Lazy and Alep
significantly reduce the number of delivered messages. How-
ever, delivering fewer message means that there are more
data estimated at the sink, which may result in the degrada-
tion of the data consistency. In this subsection, we examine
the effect of unsent messages to the data accuracy. We use
data inconsistency factor as the metric to measure the effect.

Figure 5 reports the relationship between DIF and differ-
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ent monitoring parameters with variant data dynamics. The
x-axis is different data types with variant data dynamics and
the y-axis represents the calculated DIF of the collected data.
Three types of parameters with different data dynamics are
monitored, among which Temp has relatively higher data dy-
namics than Humid and Press while Press has relatively
lower data dynamics. Furthermore, for each parameter, data
dynamics also varies according to different areas, i.e., each
parameter has three types of data dynamics, high, high first
then low denoted as mix, and low. Thus, there are totally
nine sets of data with variant data dynamics.

In the figure, we note that when the data dynamics is high,
the value of DIF is larger, e.g., the Temp high has larger
DIF than Temp mix and Temp low, and Temp high
also has larger DIF than Humid high and Press high.
The reason of this is when the data dynamics is high, it is
more difficult for the sink to estimate the correct data. From
the figure, we also find that Alep has much smaller DIF than
that of Simple and Lazy when the data dynamics is high,

Figure 5. The results of data inconsis-
tency factor.

while it has larger DIF than that of Simple and has the same
DIF as Lazy when the data dynamics is low. This result
shows that Alep indeed makes the data sampling rate to fit
the feature of data dynamics, i.e., when the data dynamics is
high, it will use higher sampling rate to gather more data so
that to make the variance small. Otherwise, it will sample
less data to save energy.

DIF increases very fast with the increasing of data dynam-
ics using Simple and Lazy, but increases slowly using Alep.
As a result, Simple and Lazy may not collect enough accu-
rate data when the data dynamics is high, i.e., DIF exceeds
the data consistency requirements of the application. How-
ever, Alep can keep DIF low by adapting the data sampling
rate to data dynamics. We should also notice that Alep im-
proves the data accuracy meanwhile somehow reduces the
number of delivered messages as shown in Section 5.2.

Comparing Lazy with Simple in terms of the accuracy of
the collected data, Lazy has very close value of data variance
as Simple, however, in Section 5.2 we know that Lazy de-
livered fewer messages than Simple, which means that the
dropped messages are not necessary to be transferred to the
sink. Thus, we conclude that lazy delivering can reduce the
number of delivered messages, while the approach of adapt-
ing the data sampling rate to data dynamics can significantly
improve the data accuracy. We also evaluated the trade off
of data consistency and energy efficiency, the results is avail-
able at [12].

6 Related Work and Discussions

Having introduced our work, in this Section, we compare
our work with previous efforts in terms of energy efficiency
design, data consistency, and adaptive design respectively.

Energy efficiency is always one of the major WSN design
goals. Thus, energy efficient protocols have been sufficiently
explored. Previous work expects to achieve the goal of en-



ergy efficiency by designing energy efficient routing proto-
cols [11], energy efficient MAC protocols [16], energy effi-
cient clustering [17], and other energy efficient approaches.
These approaches mainly focus on finding some energy ef-
ficient paths, designing better turn on/off schedules, forming
energy efficient clusters, and so on.

Data consistency is a classical problem in computer ar-
chitecture, distributed systems, and database. A lot of con-
sistency models have been proposed in the research of these
fields. However, these models are usually not applicable in
WSN. Ramamritham et al. propose an idea to maintain the
coherency of dynamics data in the dynamics web monitor-
ing application [13]. They model the dynamics of the data
items. Our model for data consistency is more general than
theirs and applied in different fields. Lu et al. propose a
spatiotemporal query service in [6] to enable mobile users to
periodically gather information and meet the spatiotemporal
performance constraints, but they propose neither data con-
sistency models, nor adaptive protocols.

Adaptive approach is always attractive in system design.
Several adaptive protocols which adapt cluster formation and
duty cycle designing are proposed in literature. Adaptive
sampling rate has also been proposed from researchers of
database field, sharing the same goal of our Alep protocol.
Jain and Chang propose an adaptive sampling for WSN [4].
They employ a Kalman-Filter (KF) based estimation tech-
nique and the sensor uses the KF estimation error to adapt
the sampling rate. Marbini and Sacks [8] propose a sim-
ilar approach to adapt the sampling rate as ours; however
they do not model the data dynamics and require an inter-
nal model, which is usually difficult to find, to compare the
sampled data. TinyDB [7] adapts the sampling rate based on
current network load conditions, but not based on the data
dynamics in the data field.

Filters are used to reduce the size of the data stream. Work
by Olston et al. uses an adaptive filter to reduce the load of
continuous query. Their work focuses on the adaptive bound
width adjustment to the filter so that their results are helpful
to analyze our lazy approach. Sharaf et al. study the trade
off between the energy efficiency and quality of data aggre-
gation in [14]. They impose a hierarchy of output filters to
reduce the size of the transmitted data. Data prioritization in
TinyDB [7] chooses the most important samples to deliver
according to the user-specified prioritization function.

7 Conclusions and Future Work
In this paper, we consider the effect of data consistency to

data operations in WSN. First, we analyze the data consis-
tency requirements and the feature of data dynamics. Then,
we formally model the data collection problem with the goal
of delivering a minimum number of messages under con-
straints of data consistency, and propose a formal definition
for data consistency and data dynamics in WSN. Then, Alep
is proposed to save energy and keep data consistency.

Considering data consistency in WSN for data quality as-
surance is an interesting problem, we plan to extend our work
in the following two directions. First, implied from the sim-
ulation, we plan to design a consistency-driven duty cycle
management scheme to take full advantage of Alep. Second,
we will relax several assumptions made in this paper, and
define a more general consistency model for different WSN
applications scenarios.
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