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Abstract

In region-based image annotation, keywords are usu-

ally associated with images instead of individual regions

in the training data set. This poses a major challenge

for any learning strategy. In this paper, we formulate im-

age annotation as a supervised learning problem under

Multiple-Instance Learning (MIL) framework. We present a

novel Asymmetrical Support Vector Machine-based MIL al-

gorithm (ASVM-MIL), which extends the conventional Sup-

port Vector Machine (SVM) to the MIL setting by introduc-

ing asymmetrical loss functions for false positives and false

negatives. The proposed ASVM-MIL algorithm is evalu-

ated on both image annotation data sets and the benchmark

MUSK data sets.

1. Introduction

With the rapid development of digital photography, large

collections of digital pictures have sprung up easily in re-

cent years and users would like to browse and search these

collections. Consequently, Content-Based Image Retrieval

(CBIR) has attracted significant interest amongst the com-

puter vision community. CBIR systems use low-level fea-

tures automatically extracted from images/image regions,

such as color and texture, to search for images relevant to a

query. However, CBIR systems often require users to pose

image queries using low-level features, which is difficult for

most people to do.

An ideal image retrieval system from a user perspec-

tive would involve what is referred as semantic retrieval,

where the user makes a request like “find pictures of the

sky” instead of “find pictures of predominantly blue and

white”. The traditional “low-tech” solution to semantic re-

trieval is to annotate each image manually with keywords

and then search on those keywords using a text search en-

Figure 1. Three sample images of “tiger” (top
row) and their segmented regions (bottom
row). A large number of irrelevant noisy re-
gions, such as “grass”, “water”, and “bush”,
exists in the training images for the keyword

“tiger”.

gine. The underlying principle of this approach is that key-

words can capture the semantic content of images more

precisely, and thus provide better means to organize and

search an image database. However, manual annotation is

not scalable and very expensive when the volume of data

becomes very large. An automated reverse process that

discovers the “words” associated with a picture by human

viewers is highly desired to handle the massive digital im-

age resources. Automatic image annotation is a process in

which a computer program learns the relationship between

the content of an image and its semantic meaning, and as-

signs keywords to the image accordingly. An image con-

tains several regions. Since each region may have different

contents and represent different semantic meaning, it is in-

tuitive to divide an image into regions and extract visual

features from each region. This is usually the first step of

region-based image annotation. A statistical model is then

learnt from a set of annotated training images to link image

regions to keywords and produce the annotation for a testing

image. However, a major hurdle remains in the aforemen-
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tioned learning infrastructure. With few exceptions, the an-

notation information for a training image is available only

at the image level, but NOT at the region level [9, 16]. In

other words, keywords are associated with images instead

of individual regions. For example, the top row of Figure 1

shows four images of “tiger” and the bottom row shows the

corresponding image regions segmented using Normalized-

cuts [14]. The existence of a large number of irrelevant

regions in the training data, such as “grass”, “water”, and

“bush”, poses a major challenge for any statistical learning

model. To find the correct correspondence between an im-

age region and the keyword “tiger”, a learner must be able

to differentiate “tiger” regions from other noisy regions at

the outset.

In this paper, we formulate image annotation as a super-

vised learning problem under Multiple-Instance Learning

(MIL) framework, and present a novel Asymmetrical Sup-

port Vector Machine-based MIL algorithm (ASVM-MIL),

which extends the conventional Support Vector Machine

(SVM) to the MIL setting through the introduction of asym-

metrical loss functions for false positive and false negative

examples. By maximizing the pattern margins subject to the

MIL constraints, ASVM-MIL converts the MIL problem to

a traditional supervised learning problem, and thus can take

the advantage of strong learning capability of SVM.

The rest of this paper is organized as follows. Section

2 reviews the related work. In Section 3, we formulate im-

age annotation as a supervised learning problem in the MIL

setting. ASVM-MIL algorithm are presented in Section 4.

Section 5 describes the extensive experiments we have per-

formed and provides the results. Finally, we conclude in

Section 6.

2. Related Work

In this section, we provide a review of previous works in

region-based image annotation and MIL.

2.1. Region-based Image Annotation

Region-based image annotation is a highly challenging

problem because of the semantic gap between low-level im-

age contents and high-level concepts. Starting from a train-

ing set of annotated images, many statistical learning mod-

els have been proposed in the literature to associate region-

based visual features with semantic concepts (keywords).

Most of the recent efforts followed an unsupervised learn-

ing approach. The key idea is to run a clustering algorithm

on the low-level feature space, and then estimate the joint

density of keywords and low-level features [4].

Specifically, Mori et al. [13] used a Co-occurrence

Model in which they looked at the co-occurrence of words

with image regions created using a regular grid. Duygulu

et al. [8] proposed to describe images using a vocabulary

of blobs. Their Translation Model assumes that image an-

notation can be viewed as a task of translating a vocabu-

lary of blobs to a vocabulary of words. Barnard et al. [2]

extended the machine translation method through a hierar-

chical clustering model and developed several models for

the estimation of joint distribution between a region and a

keyword. Jeon et al. [11] introduced a cross-media rele-

vance model (CMRM) that learns the joint distribution of a

set of regions (blobs) and a set of keywords rather than the

correspondence between a single region (blob) and a sin-

gle keyword.The CMRM modelling was subsequently im-

proved through a continuous-space relevance model and a

multiple Bernoulli relevance model. Blei et al. [3]proposed

three hierarchical probabilistic mixture models for image

annotation, in which the joint probability between words

and regions are modelled by different latent variables.

Since these unsupervised approaches rely on clustering

as the basis for image annotation, the performance of an-

notation is strongly influenced by the quality of unsuper-

vised learning. Currently, most approaches perform region

clustering based on visual features and suffer from the se-

mantic gap, i.e., regions with different semantic concepts

but similar appearance may be grouped together, while re-

gions with the same semantic content may be separated into

different clusters due to diverse appearance. To circum-

vent this difficulty, more recently, region-based annotation

problem has been formulated as a supervised learning prob-

lem by imposing strict semantic constraints on the training

data [4, 17].

2.2. Multiple-Instance Learning

MIL is a variation of supervised learning [12], where the

task is to learn a concept given positive and negative bags of

instances. It stems from the pioneering paper by Dietterich

et al., which introduced the Axis-Parallel hyper-Rectangle

(APR) algorithm [7] and the MUSK data sets. As a para-

metric approach, the objective of APR algorithm is to find

the parameters that, together with the MI assumptions, can

best explain the training data. Following this work, there is

a significant amount of research directed towards the exten-

sions of the APR algorithm.

The first probability model of MIL is the Diverse Density

(DD) model proposed in [12]. The idea of the method is to

examine the distribution of instances, and look for a point in

the feature space that is close to all instances in the positive

bags and far from those of negative bags.

The new trend of MIL is to upgrade single-instance

learning methods to deal with MIL problems, such as de-

cision trees , nearest neighbor, neural networks, and SVMs

[1]. In particular, Andrews et al. proposed two SVM-based

formulations of MIL, mi-SVM and MI-SVM [1]. To solve
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the maximum margin problem under the MIL constraints,

both algorithms modify the conventional SVM through a

iterative heuristic optimization. More recently, Chen and

Wang proposed a DD-SVM algorithm [6]. DD-SVM as-

sumes that the classification of the bags is only related to

some properties of the bags. Consequently, it solves the

MIL problem by transforming the original feature space to

a new bag feature space, and training a SVM in the new

space.

3. Region-based Image Annotation and MIL

In this section, we will formulate image annotation as a

supervised learning problem in the MIL setting.

3.1. Image Partition

An image usually contains several regions. Since regions

may have different contents and represent different seman-

tic meaning, a straightforward solution is dividing an image

into regions and extracting visual features from each region.

The image regions could be determined through either im-

age segmentation or image cutting. For example, Duygulu

et al. [8] used Normalized-cuts [14] to obtain image regions.

For each segmented region, features such as color, texture,

position, and shape are computed. On the other hand, Feng

et al. [10] cut an image into many grids and treat each grid

as a region.

3.2. Image Annotation as a Supervised
Learning Problem

Let J denote the testing set of un-annotated images,

and let T denote the training collection of annotated im-

ages. Each testing image I ∈ J is represented by its re-

gional visual features r = {r1 . . . rm}, and each training

image I ∈ T is represented by both a set of regional vi-

sual features r = {r1 . . . rm} and a keyword list WI ⊆ V ,

where rj (j = 1 . . . m) is the visual features for region j,

V = {w1 . . . wn} the vocabulary, and wi (i = 1 . . . n) the

ith keyword in V .

The goal of image annotation is to select a set of key-

words W that best describes a given image I from the

vocabulary V . The training set, T , consists of N image-

keyword pairs T = {(I1, W1), ..., (IN , WN )}. If we treat

each keyword wi as a distinct class label, the annotation

problem can be converted to an image classification prob-

lem and stated as follows: Given the feature vector of a

testing image I , which class (keyword)1 wi does I belong

to?

1In image annotation, I may be labelled by more than one keyword.

Consequently, I may belong to several classes in the image classification

problem.

However, we should notice that the image annotation is

not a traditional supervised learning problem because the

training image set does not provide explicit correspondence

between keywords and regions. Keywords are associated

with images instead of individual regions, which presents

a major hurdle for both approaches. As shown in Figure

1, the images annotated with keyword “tiger” may contain

many other regions that correspond to keywords “grass”,

“river”, or “bush”. The low-level features in these irrelevant

regions may be completely different from “tiger” regions.

The large amount of noise existing in the training data will

also present a major difficulty for a non-parametric classi-

fier, such as SVM. To circumvent this problem, we formu-

late region-based image annotation in the MIL setting in the

next Section.

3.3. MIL and Image Annotation

In the MIL setting, each bag may contain many in-

stances, but a bag is labelled positive as long as one of its

instances is positive. A bag is labelled negative only if its

instances are all negatives. From a collection of labelled

bags, the learner tries to induce a concept that will label in-

dividual instances correctly. This problem is even harder

than noisy supervised learning since the ratio of negative to

positive instances in a positive bag (the noise ratio) can be

arbitrarily high.

In region-based image annotation, each region is an in-

stance, and the set of regions that comes from the same

image can be treated as a bag. We annotate an image by

keyword wi if at least one region in the image has the se-

mantic meaning of wi. For example, the first image in Fig-

ure 1 is annotated with keyword “tiger” and segmented to

ten regions. These ten regions consist of a positive bag for

“tiger”. In this positive bag, there are only two positive in-

stances because only two regions are actually relevant to

“tiger”. Given an image labelled by keyword wi, we can

expect that at least one region will correspond to wi even if

segmentation may be imperfect. Hence, the image annota-

tion problem is in essence identical to the MIL setting.

4. ASVM-MIL Algorithm

In this section, we present a ASVM-MIL algorithm for

region-based image annotation. ASVM-MIL takes the ad-

vantage of the strong generalization capability of SVM to

find a optimal nonlinear decision boundary for each key-

word, and thus greatly facilitates image annotation.

4.1. ASVM-MIL

SVM is a well-accepted machine learning algorithm that

tries to find a separating hyperplane (w, b) with maxi-
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mum margins between positive instances and negative in-

stances. In the non-separable cases, the algorithm tries to

find the decision boundary leading to the minimum classi-

fication errors. Assuming a binary classification problem

based on independent identically distributed (i.i.d.) data

(x1, y1), . . . , (xl, yl) ∈ X × Y, Y = {−1, 1}, the task for

finding the optimal hyperplane is to minimize the following

objective function,

minimize < w.w > +C

l∑

i=1

ξ2
i , (1)

s.t. yi(xiw + b) ≥ 1 − ξi; ξi ≥ 0 yi ∈ {±1}

where ξi is a slack parameter that allows classification er-

rors. The dual optimization problem is given as,

max
α

W (α) =
l∑

k=1

αk −
1

2

l∑

i=1

l∑

j=1

αiαjyiyj < xi, xj >

−
1

2C
< α · α > (2)

with constraints,

s.t.

l∑

i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , l (3)

where αi is the Lagrange multiplier. Even though SVM has

been successfully applied to many classification problems,

directly using SVM in MIL is not feasible due to the ex-

istence of noisy instances in positive bags. In [12], it was

shown that the result of directly applying SVM in MIL is

not as good as some MIL specified algorithms.

Actually, if we directly employ SVM in MIL, we have to

minimize the classification error of bags. The correspond-

ing SVM can be obtain by solving the following optimiza-

tion problem,

minimize < w.w > +CEB , (4)

s.t. yi(xiw + b) ≥ 1 − ξi; ξi ≥ 0 yi ∈ {±1}

where EB is the number of the bag label errors. To solve

Equation 4, we have to propagate the errors from the bag

level to the instance level. Unfortunately, instance level la-

bels are not available for MIL problems so that Equation

4 leads to a mixed integer programming problem, which

requires the maximum decision margin as well as the opti-

mal instances labelling [1]. The resulting problem is a NP-

complete problem, and can not be solved efficiently. Next,

we present an approximated solution using ASVM.

EB consists of two kinds of errors, false positive E+ and

false negative E−. The objective of ASVM is to introduce

different loss functions for false positives and false nega-

tives, which translates into a bias for larger multipliers for

the class where the cost of misclassification is higher. Let

C1 and C2 denote the penalty for false positives and false

negatives, respectively, Equation 4 is modified as,

minimize < w.w > +C1E
+ + C2E

−, (5)

s.t. yi(xiw + b) ≥ 1 − ξi; ξi ≥ 0 yi ∈ {±1}

Since the number of the true positive instances in positive

bags is unknown in the MIL setting, theoretically, it is im-

possible to determine the relative weighting between C1 and

C2. However, it is generally reasonable to assume that the

average number of positive instances in each positive bag is

greater than one. So, a false negative does not necessarily

give a bag label error, while a false positive will certainly

lead to an error. Thus, C1 should be greater than C2. With-

out loss of generality, we can safely assume that C1 takes a

positive value and C2 = 0. With this assumption and con-

verting Equation 5 to the soft margin constraints, ASVM is

obtained by solving the following optimization problem,

minimize < w.w > +C

l∑

i=1

ξ2
i , (6)

s.t. yi(xiw + b) ≥ 1 −
(yi + 1)

2
ξi; ξi ≥ 0 yi ∈ {±1}

where ξi is the slack variable and C is a constant that

controls the tradeoff between the classification errors and

the maximum margin. The primal formulation of the La-

grangian will be:

LP =
||w||2

2
+ C

∑
ξi −

l∑

i=1

αi[yi(w.xi + b) − 1

+
(yi + 1)

2
ξi] (7)

Using the derivatives ∂Lp
∂w

= 0, ∂Lp
∂b

= 0, ∂Lp
∂ξ

= 0 and the

Kuhn-Tucker conditions, we get the dual formulation:

LD =

l∑

i=1

αi −
1

2

l∑

i,j=1

αiαjyiyj [K(xi, xj)+

(yi + 1)(yj + 1)

4C
δij ] (8)

where δij is the Kronecker δ defined as 1 if i = j and 0
otherwise. Let θ = 1

C
in Equation 8, the difference between

ASVM and SVM lies in the addition of θδij to the kernel

matrix. The new kernel matrix is given by:

K ′(xi, xj) = K(xi, xj) + θδij (9)

Compared with other SVM-based MIL algorithms, ASVM-

MIL has several advantages. For example, mi-SVM is

known as the first algorithm that tries to solve MIL prob-

lem by a modified SVM. In mi-SVM, a SVM is trained in
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the instance feature space using all negative instances and

selected positive instances. In addition, the algorithm uses

a heuristic method to refine the decision boundary of SVM.

The general scheme is to alternate the following two steps:

1) train a SVM for the given training data, and 2) once the

discriminant is obtained, update the labels of one or sev-

eral instances in the positive bags. Through this modifica-

tion, the algorithm adjusts labels of the positive instances to

make sure all positive bags follow the MIL setting. How-

ever, there is no guarantee that all negative instances will

lie on the negative side. On the other hand, ASVM-MIL

tries to minimize false positives (with higher misclassifica-

tion cost) by directly modifying the margin constraints of

SVM. In addition, ASVM-MIL does not require an itera-

tive approach to find the final discriminant. Convergence is

a not an issue with ASVM-MIL.

4.2. Parameter Estimation for ASVM

In ASVM, besides the kernel parameters for a regular

SVM, θ also needs to be determined. The selection of the

kernel parameters in SVM is a long-standing question. Em-

pirically, cross-validation with grid-search is the most pop-

ular method [5]. ASVM introduces a new parameter θ to

control the relative penalty between false positives and false

negatives. For a technical point of view, we should select a

θ that can best describe the training data in the MIL setting.

• Case 1: If each bag contains only one instance, the

MIL problem will be reduced to a conventional su-

pervised learning problem. Consequently, we can set

θ = 0 in the ASVM and the ASVM becomes a regular

SVM. We denote corresponding θ as θ0.

• Case 2: If each positive bag has a very large number of

true positive instances, the loss caused by a false neg-

ative is much less than that caused by a false positive.

In this case, the ideal decision boundary should be the

one that produces no false positives and as few false

negatives as possible. We denote corresponding θ as

θ1.

Generally speaking, the decision boundary will move to-

wards the positive samples as θ increases, and consequently,

the number of false positive will decrease while that of false

negative will increase. For a given MIL problem, since the

numbers of true positives in positive bags are unavailable,

the optimal θ has to be selected empirically in the range

[θ0, θ1] on a separate validation set.

5. Experimental Results

In this section, we evaluate our MIL framework for

image annotation based on a collection of images from

COREL and the MUSK data sets. Section 5.1 describes

the image data set from COREL in detail. Section 5.2

compares the annotation performance of three MIL-based

approaches, Sequential Point-Wise Diverse Density algo-

rithm (SPWDD) [17], ASVM-MIL, and mi-SVM. Finally,

we present the results of ASVM-MIL on the benchmark

MUSK data sets in Section 5.3.

5.1. Data Description

The data set used for image annotation in this paper is

same as the data set used in the experiment of [8]. There

are 5, 000 images from 50 Corel Photo CDs in this data

set. Each image comes with 4 − 5 keywords annotated by

Corel employees. 4, 500 images are used for training and

the remaining 500 are used for testing. Images are seg-

mented using Normalized-cuts [14]. Only regions larger

than a threshold are selected; each image is typically rep-

resented by 5 − 10 regions sorted by region size. A 33 di-

mensional low-level feature vector is extracted from each

region, which includes region color and standard deviation,

region average orientation energy (12 filters), region size,

location, convexity, first moment, and ratio of region area

to boundary length squared. The vocabulary contains 371
different keywords.

5.2. ASVM-MIL for Image Annotation

We have previously proposed to learn a explicit corre-

spondence between image regions and keywords through a

MIL algorithm: SPWDD [17]. After a representative im-

age region has been learnt for a given keyword, the clas-

sification problem is addressed using a Bayesian approach.

The experiment results show that SPWDD outperforms the

Machine Translation model [8] in term of recall and preci-

sion on the same annotation data set. This demonstrates that

MIL provides an effective and efficient solution for image

annotation problems. Readers are referred to [17] for details

of SPWDD and its comparison with the Machine Transla-

tion model on image annotation.

In this section, we compare three MIL algorithms on im-

age annotation problems: SPWDD, ASVM-MIL, and mi-

SVM. In particular, we compare ASVM-MIL with mi-SVM

because both are SVM-based MIL algorithms.

ASVM is implemented by modifying the source code

of lib-svm [5] and the Gaussian kernel, K(x, y) =
exp(−γ‖x − y‖2), is used. We noticed that the training

data is extremely unbalanced because there are much more

negative image regions than positive image regions for a

given keyword. In addition, the number of regions in the

data set is more than 40, 000 in total, which requires a ex-

tended training time of ASVMs. To resolve both issues,
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we randomly sampled negative bags to construct a balanced

training data set.

To determine the parameters γ and θ for ASVMs, we

randomly selected 500 images from the training set to form

an independent validation set. Five values are uniformly

selected in the range of [2−2, 22] and [θ0, θ1], respectively,

for γ and θ (25 pairs in total). The pair of parameters that

achieves best annotation results on the validation set is cho-

sen as the final one for testing. The mi-SVM is also imple-

mented based on lib-svm using the same kernel function.

The kernel parameter γ is determined similarly based on

the same validation set as ASVM.

One of the major findings in [17] is that seldom used

keywords can not be effectively learnt by MIL methods due

to insufficient training examples. Consequently, we select

70 mostly used keywords in the data set and perform our

second experiment. The average precision and recall for

SPWDD, ASVM-MIL, and mi-SVM on 70 and 30 mostly

used keywords are reported in Table 1. The best annota-

tion performance (both recall and precision) is obtained by

ASVM. In addition, a closer analysis of precision and recall

for the 30 mostly used keywords is provided in Figure 2.

The results clearly show that ASVM performs much better

than SPWDD and mi-SVM on keywords with diverse visual

characters, such as “trees”, “people”, and “rocks”. On other

keywords, the three MIL methods have mixed performance.

Finally, Table 2 shows the comparison of the ground

truth of three sample images with their annotation results

provided by SPWDD, ASVM-MIL, and mi-SVM. Since

keywords with similar semantic meanings often have same

representative regions, these words usually are included or

excluded simultaneously in the final annotation. For exam-

ple, keywords “cat” and “tiger” have the similar semantic

meaning, and both of them appear in the annotation for the

first image of Table 2. The third image in Table 2 shows

that concepts with similar visual features can hardly be dif-

ferentiated by region-based annotation systems. Keywords

“plants”, “leaf”, and “garden” are wrongly included in the

annotation of a “field” image by all three MIL algorithms

because they are represented by similar color, texture, and

shape features.

5.3. MUSK Data Sets

The MUSK data sets, MUSK1 and MUSK2, are bench-

mark data sets for MIL. Both data sets consist of de-

scriptions of molecules. Specifically, a bag represents a

molecule; instances in a bag represent low-energy confir-

mations of the molecule. Each conformation is represented

by a 166-dimensional feature vector derived from surface

properties. MUSK1 contains approximately 6 conforma-

tions per molecule on average, while MUSK2 has on aver-

age more than 60 conformations in each bag.
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Figure 2. Annotation precision (upper panel)
and recall (lower panel) of 30 mostly used
keywords by SPWDD, ASVM-MIL, and mi-

SVM, respectively

MUSK 1 MUSK2

ASVM-MIL 89.1% 86.3%

IAPR 92.4% 89.2%

DD 88.9% 82.5%

mi-SVM 77.9% 84.9%

MI-NN 88.0% 82.5%

DD-SVM 85.8% 91.3%

Table 3. Comparison of 10-fold cross-
validation accuracies on MUSK data sets

Again, we use the Gaussian kernel, K(x, y) =
exp(−γ‖x − y‖2), for ASVM. Since there is no separate

testing set with MUSK, we split the data into ten equal-size

groups, eight groups for training, one for validation, and

one group for testing. Based on the validation set, the best

pair of parameters is grid-searched in the range of [2−2, 22]
and [θ0, θ1], respectively, for γ and θ. The 10-fold cross-

validation accuracy of ASVM on MUSK data sets is re-

ported in Table 3, which also summarizes the performance

of five other MIL algorithms in the literature: Interactive

APR (IAPR) [7], DD [12], mi-SVM [1], MI-NN [15], and

DD-SVM [6].

Table 3 shows that ASVM-MIL achieves very competi-

tive classification accuracy for both MUSK1 and MUSK2

data sets. Note that IAPR has been specifically designed
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SPWDD ASVM-MIL mi-SVM

Precision for 70 words 27.31% 31.19% 28.36%

Recall for 70 words 35.66% 39.73% 35.44%

Precision for 30 words 33.86% 38.69% 35.14%

Recall for 30 words 36.88% 42.70% 37.89%

Table 1. Average annotation precision and recall for 70 and 30 mostly used keywords by SPWDD,
ASVM-MIL and mi-SVM.

Example Ground Truth SPWDD ASVM-MIL mi-SVM

cat tiger water grass

sky cat tiger sun-

shine field

cat tiger tree polar

rocks

cat tiger forest birds

rocks

meadow plants leaf

plants tower field

house garden

birds reflection leaf

plants nest

house temple grass

field plants

field foals horses

mare

plants leaf moun-

tain field tree

tree horses moun-

tain garden window

village horses fox

plants field

Table 2. Comparison of the ground truth of three sample images with their annotation results pro-
vided by SPWDD, ASVM-MIL, and mi-SVM.

and optimized for the MUSK data sets, the superiority of

APR should not be interpreted as a failure. In particular,

the result shows that ASVM-MIL greatly outperforms mi-

SVM on both data sets even though they are both SVM-

based MIL algorithms.

6. Conclusion

In this paper, a novel MIL algorithm: ASVM-MIL is

proposed and evaluated for image annotation problems. Our

experiments show that ASVM-MIL can greatly improve the

image annotation performance, especially for those key-

words with diverse appearance. Our experiment results also

show that ASVM-MIL runs very competitively with leading

MIL methods on the benchmark MUSK data sets.
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