Procedural Modeling

- Subdivision Surfaces.
- Sweeps.
- Fractals.
- Grammar-based modeling.
 - L-systems.
 - Cellular Automata.
 - Lattice Boltzman Machine.

L-systems

- A powerful procedural technique
- Based on grammars
 - Rewriting rules
- Most popular for plants
- Recent applications:
 - Cities
 - Feathers

Plants

- Complex systems
- Often, have a well defined structure
 - Trunk
 - Big branches
 - Little branches
 - Leaves
- High degree of “recursiveness”
 - Grammars/compilers are good with this.

Grammar-Based Models

- Generate description of geometric model by applying production rules

 - $S \rightarrow AB$
 - $A \rightarrow Ba \mid a$
 - $B \rightarrow Ab \mid b$

 $(ab, bab, baab, abaab)$

Grammar-based models

- Useful for modeling plants.
 - R: turn right
 - L: turn left.
Grammar-based models

• Apply the rule randomly to occurrences of F. $F \rightarrow F[R]F[L]F^*$.

Grammar-based model: L-systems

• grammar-based fractal-like models
• describe an object by a string of symbols and provide a set of production rules
• incorporate notions such as branching, pruning, …
• can also vary objects by randomly applying rules
• demo:

More examples

Procedural Modeling: summary

• Procedural techniques are very powerful
• Use with care
 – Physical validation is rare
• For some objects, procedure is the answer
 – Plants
• Can complement physics-based methods
 – Adding high frequency details
• General recommendation: add noise to your models to make them more “natural”
Cellular automata

- Simple example - game of life
- The rules:
 - Binary state on a 2D grid: cell / no cell
 - If too few or too many cells surround a cell, it dies
 - If two cells surround empty space, a cell is born
- Very simple rules produce complex behavior
 - Stable patterns
 - Moving stable patterns
 - Oscillations

Complex cellular automata

- Can have more than one cell system interacting
- Rules can be arbitrary
 - Model the needed behavior
- The result is (usually) a distribution of some property
 - Binary result, need extra step
- The art is in creating the rules
 - Take from differential equations
 - Take from general intuition
 - Too many cell -> overcrowding -> dies

Example: clouds

- Need cloud density in 3D
- 3 binary variables
 - Cloud
 - Humidity
 - Action
- General idea:
 - Action tells to create cloud
 - Cloud particle formed if there is humidity
 - Clouds grow, so set action to 1 if there is action nearby

Cloud forming rules

- Hum = (hum) & (!act)
 - Action removes humidity
- Cld = (cld) | (act)
 - Form cloud particle if action
- Act = (!act) & (hum) & f(surround action)
- f= | of all act in a template
- Extinction: do with some probabilities
 - Clear cld
 - Introduce new hum
 - Start new action

Cloud results (Dobashi et. al.)

Lattice Boltzmann Machine

- Extension of cellular automata.
- Can simulate more natural phenomena besides clouds.
Modeling—summary

How do we ...
- Represent 3D objects in a computer?
- Construct such representations quickly and/or automatically with a computer?
- Manipulate 3D objects with a computer?

Model Construction

- Interactive modeling tools
 - CAD programs
 - Subdivision surface editors :)
- Scanning tools
 - CT, MRI, laser, magnetic, robotic arm, etc.
- Computer vision
 - Stereo, motion, etc.
- Procedural generation
 - Sweeps, fractals, grammars
- Physics-based modeling