Points and Particles

What is a particle?
• Particles are objects that have mass, position, velocity, acceleration, and other attributes.
• Particle systems consist of a large number of particles moving under the influence of external forces such as gravity, and collisions with stationary obstacles.

What is a particle?
• Particles can be made to exhibit a wide range of interesting behavior such as join, split, stretch, or simulating natural phenomena.
• There are mainly two types of particle systems,
 – Interacting particle systems. (mass-spring; molecule)
 – Non-interacting particles.

Interacting Particle Systems
• Ideas from molecular dynamics have been used to develop models of deformable materials using collections of interacting particles.
• In these models, long-range attraction forces and short-range repulsion forces control the dynamics of the system.

Interacting Particle Systems
• Typically, these forces are derived from an intermolecular potential function such as the Lennard-Jones function:

\[
\phi_{LJ}(r) = \frac{-C}{n-m} \left(\frac{m}{r} \right)^6 - \frac{a}{r} \left(\frac{P_0}{r} \right)^m,
\]

Lennard-Jones functions

Lennard-Jones type function: the solid line shows the potential function \(\phi_{LJ}(r)\), and the dashed line shows the force function \(f = -\frac{d\phi_{LJ}}{dr}\), \(r\) is the distance between two particles.
Time Integration

- Given the initial position $x_0(t_0)$ and the initial velocity $v_0(t_0)$, we simulate Newtonian dynamics:

 \[a_i = \frac{F_i}{m_i} \]
 \[v_{i+1} = v_i + \Delta t \cdot a_i \]
 \[x_{i+1} = x_i + \Delta t \cdot v_{i+1} \]

- Time integration:

Interacting Particle Systems

- Particle systems whose dynamics are governed by potential functions and damping will evolve towards lower energy states.

- In 3D the particles will arrange themselves into hexagonally ordered layers. They are naturally used to model solid objects via applied external forces.

Interacting Particle Systems

- However, it is rather hard to model surface using particle systems.

- Since in the absence of external forces and constraints, 3D particle systems prefer to arrange themselves into solids rather than surfaces.

Oriented Particle Systems

- Szeliski and Tonnesen introduced oriented particle systems to model more flexible surfaces.

- They add an orientation to each particle’s state and devise new interaction potentials for the oriented particles which favor locally planar or spherical arrangements.

Oriented Particle Systems

Non-interacting Particles

- Non-interacting particle systems have been used to model visually complex natural phenomena such as fire, smoke, foliage, and the spray of splashing water.

- In these systems, the Navier-Stokes equations are employed to describe the motion.
Navier-Stokes Equations

\[\nabla \cdot \mathbf{u} = 0, \]
\[\frac{\partial \mathbf{u}}{\partial t} = \nu \nabla \cdot (\nabla \mathbf{u}) - (\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{1}{\rho} \nabla p + \mathbf{f}, \]

- Where \(\mathbf{u} \) is the velocity field, \(\nabla = (\partial / \partial x; \partial / \partial y; \partial / \partial z) \)
- The first equation conserves mass of the modeled object.

- The second equation models the changes in the velocity field over time due to the effects of viscosity (\(\nu \)), convection, density (\(\rho \)), pressure (\(p \)), and external force (\(\mathbf{f} \)).

Solving the two equations can create a simulation of natural phenomena. The general framework for simulation or animation process can be described as follows:

1. Update the velocity field by solving Equation 2 using numerical methods.
2. Apply velocity constraints due to obstacles.
3. Enforce mass conservation by solving a linear system build from Equation 1.
4. Update the position of the particles using the new velocity field.

Rendering

- Implicit Functions.
- Direct rendering
 - ray tracing

• Implicit Functions.
 – Define a field function with each particle based on the distance to the particle.
 – The surface of the particle systems is all the points in space where the summation of all the individual field function equation to a threshold.

\[G(x, y, z) = \sum g_i(x, y, z) - \text{threshold} = 0 \]

- Where \(g_i \) is the field function for particle \(i \).