Illumination and Shading

Illumination
- Illumination models
 - Light and surfaces
 - Local illumination versus Global illumination
 - Phong reflection model
 - Ambient reflection
 - Diffuse reflection
 - Specular reflection
 - Light attenuation
- Polygonal shading
 - Flat Shading
 - Gourand Shading
 - Phone Shading

Illumination Model
- Also called reflection model or lighting model.
- Describe the interaction between the light sources and the surfaces.
- Local illumination models versus global illumination models.
- Local models are ad-hoc, but fast and easy.
- Global models are more accurate, but much more expensive.

Light Sources
- Point sources
- Spotlights
- Distant light

Point Source

Spotlights
Distant light

Surface types

Phong Reflection Model

• An efficient approximation of physical reality.
• Supports three types of material-light interactions.
 • Ambient
 • Diffuse
 • Specular

Ambient Reflection

• \(I_a = k_a L_a \)
• \(0 \leq k_a \leq 1 \)

Diffuse Reflection

• \(I_d = k_d L_d \cos \theta \)
• \(\cos \theta = l \cdot n \)
• \(I_s = k_s L_s (l \cdot n) \)

Specular Reflection

• \(I_s = k_s L_s \cos^\alpha \phi \)
• \(\cos \phi = r \cdot v \)
• \(I_s = k_s L_s (r \cdot v)^\alpha \)
Phong Model

- \(I = I_a + I_d + I_s = k_s L_s (r \cdot v)^{\alpha} + k_d L_d (l \cdot n) + k_a L_a \)
- With light attenuation by distance

 \[I = \frac{1}{(a + b d + c d^2)} \left(k_d L_d (l \cdot n) + k_s L_s (r \cdot v)^{\alpha} \right) + k_a L_a \]

Polygonal Shading

- Flat shading
- Gourand shading
- Phong shading

Flat Shading

- `glShadeModel(GL_FLAT)`
 - Constant intensity shading, i.e. the intensity is constant for each polygon.
 - Very simple to implement, however, it may introduce intensity discontinuities by Mach band effect.

Mach Band Effect

- The human visual system is very sensitive to small differences in light intensity.
- Because of a property known as lateral inhibition.

Gourand Shading

- `glShadeModel(GL_SMOOTH)`
 - Interpolative intensity shading.
 - Calculate intensity at each vertex of the polygon and interpolate the other intensity values.

Normal vector calculation

```
\[ n_1 \quad n_2 \quad n_3 \quad n_4 \]
```
Phong shading

- Evaluate the intensity at each pixel.
- The normals are interpolated.
- Often done off-line.
- \(n_c = (1-\alpha)n_a + \alpha n_b \)
- \(n_a = n_a / |n_a| \)

\[\begin{align*}
&n_a \\
&n_b \\
&n_c
\end{align*} \]