Adaptive Schedulability Analysis

Luca Santinelli

RTSOPS - Porto, 5th July 2011
Real-Time Systems

• Applications
• Resource reservation mechanisms
• Other system elements (memories, buses, shared resources mechanisms, etc)
Real-Time Systems

• Applications
• Resource reservation mechanisms
• Other system elements (memories, buses, shared resources mechanisms, etc)...

Guarantee timing constraints!
Schedulability Analysis

- Classical real-time analysis: **Processor Demand Criterion, Response Time Analysis**
- Abstractions and analysis:
 Curves -> dbf, sbf, wbf (and bdf), Real-Time Calculus, etc.
 Schedulability conditions -> Comparison among curves
Schedulability Analysis

- Classical real-time analysis:
 Processor Demand Criterion, Response Time Analysis

- Abstractions and analysis:
 Curves -> **dbf, sbf, wbf** (and **bdf**), Real-Time Calculus, etc.
 Schedulability conditions -> Comparison among curves
Adaptivity

From Artist website: “Adaptive Real-Time: “This is a more recent approach to embedded systems design, where temporal constraints can be relaxed, which allows optimized use of resources. This includes applications – where managing the Quality of Service (QoS) is essential, such as telecommunication systems, multi-media, and wide-area networked applications. In this relatively new area, there is a recognized lack of design theory and tools.”

Adaptivity is the capability to adapt to changing conditions

- Applications: tasks (C,T,D) required to change
- Resource reservation mechanisms: servers (Q,P) required to adapt

Adaptivity both in terms of modeling and analysis
Present the model first, then discuss the analysis...
Mode Change

resource

application

mode II

? \(\delta \)

mode II

\(t_{req} \)

\(t_{go} \)
Mode Change

- **Applications:** changes at task levels (task activation, deletion, modifications), mode I to mode II, mode transitions taken into account - “almost” done

- **Resource reservation mechanisms:** TDMA servers, periodic servers (stable states and transition characterized); contract-based approaches - in progress

- **Other system elements** - not considered
Mode Change cont.

The mode change analysis:
Requires characterization of the steady states and the transitions
With applications -> Delays
With resource reservations -> Delays?

Tight and safe bounds... for an accurate analysis
Mode Change cont.

The mode change analysis:
Requires characterization of the steady states and the transitions
 With applications -> Delays
 With resource reservations -> Delays?

Tight and safe bounds... for an accurate analysis

Limited and constrained analysis:
 a) Synchronous mode changes
 b) Macro changes
 c) [Binary] analysis: schedulability or not (at most deriving a delay)
 d) Transitions: definition of transient - when does it ends (stable condition)?
Mode Change cont.

How to integrate application, resource reservations and other element mode changes?
Mode Change cont.

How to integrate application, resource reservations and other element mode changes?

That’s an open problem...
Adaptivity in practice

Guarantee timing constraints in each condition!

• Complex transitions
 Sequences of transitions (multiple transitions)
 Asynchronous transitions
 Active and passive elements - centralized (application and server monitors) or distributed (which possible complex mechanisms to be developed?) management and analysis

• Composability
 Component-based real-time systems: isolation of the analysis and interface-based adaptivity analysis
What else?

- Another model than the multi-mode?
- Another analysis?
What else?

- Another model than the multi-mode?
- Another analysis?

These are open problems...
To open the discussion...

- Transition [reactive] strategies: how to define a real-time (guaranteed) sequence of intermediate steps from mode I to mode II
- From micro-modes to a fluid-mode model: how can it be developed a more fine grained model and analysis?
- How to develop cooperative strategies? [Active and passive elements + transition manager]