6 Concepts and concept location

- Initiation
- Concept Location
- Impact Analysis
- Prefactoring
- Actualization
- Postfactoring
- Conclusion
Role of concept location

- Concept location finds code snippet where a change is to be made
- Change requests are most often formulated in terms of domain concepts
 - Example: “Correct error that arises when trying to paste a text”
 - the programmer must find in the code the locations where concept “paste” is located
 - this is the start of the change
Partial comprehension of a code

• Large programs cannot be completely comprehended
 • programmers seek the minimum essential understanding for the particular software task
 • they use an as-needed strategy
 • they attempt to understand how certain specific concepts are reflected in the code

• Analogy: visiting a large city
Search in the unknown parts of system

Understanding the problem

Selecting a search strategy

Formulating a query

Executing the search

Analysis of results
Concept triangle

Name
- naming
- definition

Intension

Extension
- annotation
- traceability

recognition
location
Spelling corner (Merriam-Webster)

• **Intension** /ɪn-ˈtɛn(t)-ʃən/
 – synonym **CONNOTATION**
 • the suggesting of a meaning by a word apart from the thing it explicitly names or describes b: something suggested by a word or thing — W. R. Inge> an essential property or group of properties of a thing named by a term in logic

• **Intention** /ɪn-ˈtɛn(t)-ʃən/
 – synonyms **INTENT, PURPOSE, DESIGN, AIM, END, OBJECT, OBJECTIVE, GOAL** mean what one intends to accomplish or attain.
 • INTENTION implies little more than what one has in mind to do or bring about <announced his intention to marry>...
Dog as an example

<<name>>
Dog / Pes / Hund

<<intension >>
Hairy animal with teeth…

<<extensions >>
Lassie
Fido
Buck (in “Call of the wild” by Jack London)
Concept location

- Concept extensions are implemented as code fragments
 - variables, classes, methods, or other
- Programmers finds these code fragments
 - easy in small programs or in the programs that the programmer knows well
 - hard in large programs or programs that the programmer does not know
- Watchmaker anecdote
Formulating a query

- Extract the set of concepts used in the change request
- Delete the concepts intended for the communication with the programmers
- Delete the concepts that are unlikely to be implemented in the code
 - concepts related to the things that are outside of the scope of the program
 - concepts that are to be implemented in the future.
- Rank the remaining concepts by the likelihood that they can be easily located
Example

• Point of Sale system
• Change request is “Implement a credit card payment”
• Identify the concepts
 • “Implement”
 • “Credit card”
 • “Payment”
Example

• Point of Sale system

• Change request is “Implement a credit card payment”

• Identify the concepts
 • “Implement” … communication with programmer
 • “Credit card”
 • “Payment”
Example

• Point of Sale system
• Change request is “Implement a credit card payment”
• Identify the concepts
 • “Implement” … communication with programmer
 • “Credit card” … to be implemented, not in the old code
• “Payment”
Example

• Point of Sale system
• Change request is “Implement a credit card payment”
• Identify the concepts
 • “Implement” … communication with programmer
 • “Credit card” … to be implemented, not in the old code
 • “Payment” !!! Significant concept, find it in the code
Recognize concept

• Reading code
 – Comments and identifiers
 – Characteristic algorithm (plan)

• Small modification
 – Change the code slightly, execute
 – Throw away this modification! Return the code to the original state!
Concept location methodologies

• Human knowledge
• Traceability tools
• Dynamic search (execution traces)
• Static search
 – dependency search
 – "grep" (pattern matching)
 – information retrieval techniques
GREP Search Technique

• GREP is an acronym for "global regular expression print".
 – GREP prints out the lines that contain a match for a regular expression.
 – Programmer iteratively formulates search query and then investigates the results.
 – If the results are too big to review, programmer either performs further search within these results or reformulates the search query.
Example: Art of Illusion

- 3D modeling studio, written in Java
- More than 600 classes, 100,838 LOC.
- Implement a zooming control
 - currently, the only way to zoom is to enter the zooming value into the specific text box
 - a value of the zoom has to be typed in by the user
 - the default value is 100%.
 - implement zooming control that uses arrow keys
Art of Illusion

© 2012 Václav Rajlich

Software Engineering: The Current Practice Ch. 6
GREP example

• First search: “zoom”
 – The query produced irrelevant 6 lines
• Second search: “scale”
 – returned in 1,544 lines, too large for inspection.
• Third search: “100”
 – default scaling value is 100
 – search within the results of the previous search
 – returned 4 lines from the ViewerCanvas.java file.
• Inspection
 – one of the lines is the location
Dependency Search Technique

• Uses Class Dependency Graphs (CDG)
 – extracted from the existing code

• Local functionality
 – consists of concepts that are actually implemented in the module and are not delegated to others.

• Composite functionality
 – as the complete functionality of a module combined with all its supporting modules.

• Determined by reading code and documentation
Functionailties of component X

Concept A

Concept B

Component X

Local responsibility

Composite responsibility
Concept location by dependency search

Find set of starting modules

Select one module

Is the concept implemented in the module?

Find set of the supplier modules

Is the concept implemented in the composite responsibility?

Find set of backtrack modules

[Yes] Stop the search

[No]
Progress of the search
Dependency search part 1

• Start at the ModelingApp class
 – concept not contained within its local responsibility

• The next step: inspect LayoutWindow
 – responsible for constructing the main AOI window
 – composite responsibility contains the concept, but the local responsibility does not.

• There were clues to search ValueField
 – it implements the text box.
 – concept is not present in the composite responsibility
 – backtrack to the LayoutWindow class
Dependency search part 2

• The SceneViewer class
 – several functions are responsible for responding to events from the user
 – function updateImage() was responsible for repainting the screen
 – we determined that the composite responsibility of this function contained the concept.
 – local responsibility of SceneViewer still did not contain the concept.

• ViewerCanvas class
 – contains the concept
Comparison of the Techniques

• The grep-based
 – depends on the use of naming conventions
 – independent of class structure
 • GREP tools provide just the list of search results
 – suitable for explicit concepts only

• The static dependency search technique
 – utilizes the class structure
 – needs correct understanding of composite and local functionality
 – suitable for both explicit and implicit concepts
Example Violet

• Violet
 – Open source UML editor

• Supports drawing UML Diagrams
 – Class diagram, Sequence diagram, State diagram, Object diagram, Use case diagram

• 60 classes and 10,000 lines of code
GUI of Violet
Change Request

• Record the author for each figure
• This change will make Violet more versatile
 – support for cooperative work
 – the author created a figure
 • author knows the semantics of the figure
• Name of concept: “author”
 – implicit concept extension
 • the extension is not present in the current code
 – belongs to the set of the figure properties
Status of components (marks)

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>The class was never inspected and is not scheduled for an inspection.</td>
</tr>
<tr>
<td>Propagating</td>
<td>The programmers inspected the class and found that its composite responsibility contains the concept</td>
</tr>
<tr>
<td>Unchanged</td>
<td>The programmers inspected the class and found that its composite responsibility does not contain the concept</td>
</tr>
<tr>
<td>Next</td>
<td>The class is scheduled for inspection</td>
</tr>
</tbody>
</table>
Locating figure properties: Start

UMLEditor

- SequenceDiagram
 - Graph
- UseCaseDiagram
 - Graph
- ClassDiagram
 - Graph
- ObjectDiagram
 - Graph
- StateDiagram
 - Graph

- ClassRelationship
 - Edge
- PackageNode
- ClassNode
- InterfaceNode
- NoteNode

- MultiLineString
- RectangularNode
- AbstractNode
Classes to inspect

- SequenceDiagram
- UseCaseDiagram
- ClassDiagram
- ObjectDiagram
- StateDiagram
- ClassRelationship
- PackageNode
- ClassNode
- InterfaceNode
- NoteNode
- MultiLineString
- RectangularNode
- AbstractNode
Most likely supplier

- SequenceDiagram
- UseCaseDiagram
- ClassDiagram
- ObjectDiagram
- StateDiagram

- ClassRelationship
- PackageNode
- ClassNode
- InterfaceNode
- NoteNode

- MultiLineString
- RectangularNode
- AbstractNode
Next classes to inspect

- UMLEditor
- SequenceDiagram
- UseCaseDiagram
- ClassDiagram
- ObjectDiagram
- StateDiagram
- ClassRelationship
- PackageNode
- ClassNode
- InterfaceNode
- NoteNode
- MultiLineString
- RectangularNode
- AbstractNode
Wrong way

- UML Editor
 - Sequence Diagram
 - Use Case Diagram
 - Class Diagram
 - Object Diagram
 - State Diagram

- Class Relationship
 - Package Node
 - Class Node
 - Interface Node
 - Note Node

- Multi Line String
 - Rectangular Node
 - Abstract Node
Possible extension of the search

- UMLEditor
 - SequenceDiagram
 - Graph
 - UseCaseDiagram
 - Graph
 - ClassDiagram
 - Graph
 - ObjectDiagram
 - Graph
 - StateDiagram
 - Graph
 - ClassRelationship
 - Edge
 - PackageNode
 - ClassNode
 - InterfaceNode
 - NoteNode
 - MultiLineString
 - RectangularNode
 - AbstractNode
Another location found
Interactive tool for concept location

Computer

Find set of starting modules

Programmer

Select one module

Is the concept implemented in the module?

[Yes] [Stop the search]

Is the concept implemented in the composite responsibility?

[Yes] [No]

Find set of the supplier modules

[No]

Find set of backtrack modules
Example 2: Eclipse 3.3

- Eclipse – Integrated Development Environment for Java
- 15,479 classes, 156,334 functions
- Change request: BugID 172261*: [Actions] When rename a file in one project’s navigator, the other selected file’s name is renamed

*https://bugs.eclipse.org/bugs/show_bug.cgi?id=172261
Dependency search in Eclipse
Results

- Main class: Launcher
- Minimum possible number of classes visited = 4
- Maximum number of classes to be visited = 1076 (1+8+1035+32)
- Developers have to use heuristics or intuition when there are too many suppliers
Concept location by grep

- Classical technique for concept location
 - based on pattern matching
- Programmer formulates a query
 - based on concept name(s)
- Grep searches the files
 - finds corresponding lines of code ("hits")
 - programmer investigates the hits
- If a search fails, new query is tried
 - programmer learns from failed search
Example: “Anchors” bug in Mozilla*

- Change request
 - Anchors in e-mails are broken (Clicking Anchor doesn't go to target in e-mail)

- Initial knowledge

Knowledge after learning

• Result of repeated search
 – Programmer learns from the searches

Winning grep query: \texttt{mailbox: //}