Hence, there exists a constant $C > 0$ such that

\[F_n \geq \frac{C}{(n+1)^3} 2^{-nD(Q_n || F_n)}, \]

for all sufficiently large n which, together with the continuity of $D(Q_n || F_n)$ with respect to Q_n, establishes (40) for case (B). \hfill \Box

ACKNOWLEDGMENT

The author is grateful to the Associate Editor and an anonymous reviewer for their helpful comments. In particular, the Associate Editor’s comment on (n, k) linear codes was significant in revision of this correspondence. The author wishes to thank I. Nakano for discussions on the proof of Lemma 2.

REFERENCES

These options are considered, rather than the absolute value. Therefore, in this paper, only the inequality postulates, which actually formalize the intuitive understanding of uncertainty, are used to define partition entropy, along with two inherent equality properties of symmetry and expansibility (defined below).

In previous work, partition entropy is defined as the Schur-concave function [5], which satisfies the inequalities on the majorization lattice of probability distributions [6]. However, these inequalities concern only partition entropy itself and do not involve its conditional counterpart. Conditional entropy, as a function of a condition partition argument and dually monotonic in the decision partition argument, inherently owns the following two inequalities, which coincide with the intuitive understandings of uncertainty in cognitive science as follows:

- if the decision partition is fixed, the finer a condition partition is, the more competent it is to predict the decision partition, and thus the less the conditional entropy is;
- if the condition partition is fixed, the finer a decision partition is, the more difficult it is to be predicted from the condition partition, and thus the greater the conditional entropy is.

These two postulates indicate that conditional entropy is monotonic in the condition partition argument and dually monotonic in the decision partition argument. These are the monotonicity properties, which conditional entropy holds inherently. Since direct method exists for defining conditional entropy based on its partition entropy, these two inequality postulates are actually additional constraints on partition entropy.

In this correspondence, we add the aforementioned postulates to a new definition of partition entropy, and reduce the redundancies in all the inequality postulates. According to two different definitions of conditional entropy based on its partition entropy, we present the checking conditions (sufficient and necessary or sufficient only) for any partition entropy, respectively. It should be noted that the partition entropy resulted from the axiomatization method [2] by the equalities is within the family of partition entropies defined in this paper. These results generalize and illuminate the common nature of all partition entropies.

II. BASIC NOTATIONS AND NOTIONS

In the following, we adopt the notations in [2] and [6], and more information on partition entropy can be found there. The set of reals, the set of positive reals, the set of natural numbers, and the set of positive natural numbers are denoted by \(\mathbb{R} \), \(\mathbb{R}_{>0} \), \(\mathbb{N} \), \(\mathbb{N}_{>0} \), respectively. All other sets considered in the following discussion are nonempty and finite:

\[
\pi = \{A_1, \ldots, A_m\} \text{ is a partition of a set } A, \text{ if } \bigcup_{i=1}^{m} A_i = A \text{ and } A_i \cap A_j = \emptyset (i \neq j). \text{ A block of a partition refers to any element in a partition of a set } A. \text{ Let } PART(A) \text{ be the set of partitions of set } A. \text{ The class of all partitions of finite sets is denoted by } PART. \text{ The one-block partition of } A \text{ is denoted by } 1_A. \text{ The partition } \{[a] | a \in A\} \text{ is denoted by } \omega_A. \text{ Thus, } 1_A \text{ is the most coarse partition of } A, \text{ while } \omega_A \text{ is the finest partition of } A.
\]

Let \(\pi, \pi' \in PART(A) \), then \(\pi \subseteq \pi' \) if every block of \(\pi \) is included in a block of \(\pi' \). It is obvious that \(\omega_A \subseteq 1_A \).

If \(A, B \) are two disjoint sets, \(\pi \in PART(A) \), \(\sigma \in PART(B) \), where \(\pi = \{A_1, \ldots, A_m\} \), \(\sigma = \{B_1, \ldots, B_n\} \), then the partition \((\pi + \sigma) \in PART(A \cup B) \) is given by

\[
\pi + \sigma = \{A_1, \ldots, A_m, B_1, \ldots, B_n\}.
\]

Let \(\pi \in PART(A) \) and \(C \subseteq A \). The “trace” of \(\pi \) on \(C \) is given by

\[
\pi_C = \{A_i \cap C | A_i \in \pi \text{ such that } A_i \cap C \neq \emptyset\}.
\]

It is clear that \(\pi_C \in PART(C) \).

Let \(\pi, \sigma \in PART(A) \) (two partitions defined on the same set \(A \)), where \(\pi = \{A_1, \ldots, A_m\} \), \(\sigma = \{B_1, \ldots, B_n\} \). The partition \(\pi \land \sigma \) whose blocks consist of the nonempty intersections of the blocks of \(\pi \) and \(\sigma \) can be written as

\[
\pi \land \sigma = \pi_{A_1} + \cdots + \pi_{A_m} = \sigma_{B_1} + \cdots + \sigma_{B_n}.
\]

A. Partition Entropy

Partition entropy is a mapping

\[
\mathcal{H} : PART \rightarrow \mathbb{R}
\]

satisfying some additional conditions.

If \(\pi = \{A_1, \ldots, A_m\} \) is a partition of a set \(A \), then the probability distribution vector attached to \(\pi \) is \(P(\pi) = (p_1, \ldots, p_m) \), where \(p_i = |A_i| \) for \(1 \leq i \leq n \). Thus, it is straightforward to consider the notion of partition entropy via the entropy of the corresponding probability distribution. We define the measure function of \(\mathcal{H} \) as a mapping

\[
\mathcal{M} : \Delta \rightarrow \mathbb{R}
\]

such that \(\mathcal{H}(\pi) = \mathcal{M}(P(\pi)) \) for every \(\pi \in PART \), where \(\Delta = \{P(\pi) | \pi \in PART \} \).

The blocks in a partition are unordered while the elements in \(P(\pi) \) are ordered. Thus, the inherent postulate of \(\mathcal{M} \) is that it is symmetric in the sense that

\[
\mathcal{M}(P(\pi)) = \mathcal{M}(P'(\pi))
\]

where \(P'(\pi) \) is any permutation of \(P(\pi) \).

The other equality postulate of \(\mathcal{M} \) is expansibility in the sense that for every \(P \in \Delta_m \)

\[
\mathcal{M}(P) = \mathcal{M}(P')
\]

where \(P = (p_1, \ldots, p_m), P' = (p_1, \ldots, p_m, 0) \), and \(\Delta_m = \{(p_1, \ldots, p_m) : 0 \leq p_i \leq 1 \text{ for } i = 1, \ldots, m, p_1 + \cdots + p_m = 1\} \).

Formulas (2) and (3) are the only two equalities the partition entropy in this paper must satisfy.

B. Entropically Comparable Relationship Between Partitions

For general \(p, q \in \Delta_m \), it is hard to say precisely when the prediction under \(q \) is not easier than under \(p \) without a special \(p \) and \(q \) for which this can be done. Namely, if \(p, q \in \Delta_2 \) and \(p = (\alpha, 1 - \alpha), q = (\beta, 1 - \beta) \), then the prediction under \(p \) is not easier than under \(q \) if and only if \((\alpha, 1 - \alpha) \) is at least as close as \((\beta, 1 - \beta) \) to the uniform distribution \((\frac{1}{2}, \frac{1}{2})\). To be “at least as close” naturally means

\[
|\alpha - \frac{1}{2}| \leq |\beta - \frac{1}{2}|
\]

This observation can be applied to all vectors \(p, q \in \Delta_m \) with only two different coordinates. \(p \) is said to be a smoothing of \(q \), in symbol \(p = Sm(q) \), if there exist \(1 \leq j \neq k \leq m \) such that all coordinates of \(p \) and \(q \) coincide except the \(j \)th and \(k \)th, and these two coordinates satisfy (4) for

\[
\alpha = \frac{p_j}{p_j + p_k} \quad \text{and} \quad \beta = \frac{q_j}{q_j + q_k}.
\]

We extend the above smoothing relationship [5] between two probability distributions to the entropically comparable relationship between partitions. Let \(\pi = \{A_1, \ldots, A_m\}, \sigma = \{B_1, \ldots, B_n\} \), and \(p = P(\pi), q = P(\sigma) \). Without loss of generality, if \(m < n \) we can add
(n − m) 0’s to the right side of p to make the dimensions of the two vectors equal while keeping the entropy unchanged. Then, the partial order \(\preceq \) on \(\text{PART} \times \text{PART} \) is defined as follows. For any \(\pi, \sigma \in \text{PART}, \pi \preceq \sigma \) if \(p = S \cdot \omega(q) \) or exists \(k \in \text{PART}(\pi = \omega(\pi)) \) s.t. \(k \preceq \sigma \) and \(p = S \cdot \omega(r) \). If \(\pi \preceq \sigma \) or \(\sigma \preceq \pi \), it is easy to tell which partition entropy is bigger between \(\pi \) and \(\sigma \) because smoothing a probability distribution means to increase its partition entropy. This time it can be said that \(\pi \) and \(\sigma \) are \textit{entropically comparable} with each other.

It is clear that the relationship \(\preceq \) between partitions is reflexive, transitive and anti-symmetric.

C. Equivalents of Entropically Comparable Relationship

The decreasing rearrangement of \(P(\pi) \) is denoted by \(P_1(\pi) = (p_1, \ldots, p_n) \), where \(p_1 \geq p_2 \geq \cdots \geq p_n \). For entropically comparable relationships between partitions, the following conditions are equivalent [6]:

Let \(\pi = \{A_1, \ldots, A_m\}, \sigma = \{B_1, \ldots, B_n\}, \) and \(p = P_1(\pi), q = P_1(\sigma) \), supposing \(m \leq n \) and adding \((n - m)\) 0’s to the right side of \(p \) as follows:

1. \(\pi \preceq \sigma \);
2. \(q \) for some doubly stochastic matrix \(A \) (Matrix \(A = (a_{ij})_{j=1}^n \) is said to be doubly stochastic if all its row and column vectors belong to \(\Delta_n \));
3. \(\sum_{i=1}^k p_i \leq \sum_{i=1}^k q_i \) \((k = 1, \ldots, n - 1) \), \(\sum_{i=1}^n p_i = \sum_{i=1}^n q_i \).

Equivalent 2) shows that vector \(q \) post-multiplied by a doubly stochastic matrix is equivalent to smoothing \(q \). Equivalent 3) provides a convenient method to check whether two partitions are entropically comparable.

D. Two Definitions of Conditional Entropy

Given a set \(A \), conditional entropy is a mapping

\[
C : \text{PART}(A)^2 \rightarrow \mathbb{R}.
\]

The first argument refers to a condition partition while the other one refers to a decision partition. If \(\pi, \sigma \) are two partitions of \(A \), \(C(\pi, \sigma) \) measures the degree of difficulty in predicting \(\sigma \) by \(\pi \). Based on an existing partition entropy, we give the definition of conditional entropy.

Definition II.1: Let \(\pi, \sigma \in \text{PART}(A), \pi = \{A_1, \ldots, A_m\}, \sigma = \{B_1, \ldots, B_n\} \). A conditional entropy \(C^1 \) is a function \(C \) in (5) such that

\[
C^1(\pi, \sigma) = \sum_{i=1}^m \frac{|A_i|}{|A|} \cdot \mathcal{H}(\sigma_{A_i})
\]

where \(\sigma_{A_i} \) is the “trace” of \(\sigma \) on \(A_i \).

Definition II.2 states that the conditional entropy \(C^1 \) is the expected value of the entropies calculated according to the conditional distributions. Namely, \(C^1(\pi, \sigma) = E_{\sigma_{A_i}}[\mathcal{H}(\sigma_{A_i})], A_i \in \pi \).

Definition II.2: Let \(\pi, \sigma \in \text{PART}(A), \pi = \{A_1, \ldots, A_m\}, \sigma = \{B_1, \ldots, B_n\} \). A conditional entropy \(C^2 \) is a function \(C \) in (5) such that

\[
C^2(\pi, \sigma) = \mathcal{H}(\pi \land \sigma) - \mathcal{H}(\pi).
\]

Definition II.2 states that the conditional entropy \(C^2 \) is the difference between two entropies: one is of the intersection of the condition and decision partition, while the other is of the condition partition only.

The equality \(C^1(\pi, \sigma) = C^2(\pi, \sigma) \) yields the Shannon entropy. Thus, this famous axiomatization of the Shannon entropy shows the rationality of these two definitions.

III. INEQUALITY POSTULATES OF PARTITION ENTROPY

All the inequalities partition entropy and its corresponding conditional counterpart must satisfy are listed in this section.

Postulate III.1: For any \(\pi \in \text{PART}(A) \)

\[
\mathcal{H}(\omega A) \leq \mathcal{H}(\pi) \leq \mathcal{H}(\omega \pi).
\]

Postulate III.2: Let any \(\pi, \pi' \in \text{PART}(A) \) and \(\pi \subseteq \pi' \), then

\[
\mathcal{H}(\pi) \leq \mathcal{H}(\pi').
\]

Postulate III.3: Let any \(\pi, \pi' \in \text{PART}(A) \) and \(\pi \preceq \pi' \), then

\[
\mathcal{H}(\pi) \leq \mathcal{H}(\pi').
\]

When a function \(\mathcal{H} \) defined by (1) satisfies Postulate III.3, its corresponding measure function \(\mathcal{M} \) is Schur-concave. In the following, \(\mathcal{H} \) is Schur-concave or concave if and only if its corresponding measure function \(\mathcal{M} \) is Schur-concave or concave.

Postulate III.4: Let any \(\pi, \pi', \sigma \in \text{PART}(A) \) and \(\pi \subseteq \pi' \), then

\[
C(\pi, \sigma) \leq C(\pi', \sigma).
\]

Postulate III.5: Let any \(\pi, \sigma, \sigma' \in \text{PART}(A) \) and \(\sigma \subseteq \sigma' \), then

\[
C(\pi, \sigma) \leq C(\pi, \sigma').
\]

Postulate III.4 and III.5 state that conditional entropy \(C \) should be monotonic in the first argument and dually monotonic in the second argument. Postulate III.4 shows that finer condition partition has more ability for predicting, while Postulate III.5 shows that coarser decision partition relaxes the requirement of precision for classification and thus decreases the difficulty for predicting. They are two postulates conditional entropy holds inherently.

IV. RELATIONSHIPS BETWEEN INEQUALITY POSTULATES OF PARTITION ENTROPY

In this section we study the relationships among these inequality postulates, reduce the redundancies in them, and give a new definition of partition entropy.

Theorem IV.1. [5]: If a function \(\mathcal{H} \) defined by (1) satisfies Postulate III.3, it satisfies Postulate III.1.

Theorem IV.2. [5]: If a function \(\mathcal{H} \) defined by (1) satisfies Postulate III.3, it satisfies Postulate III.2.

Proof: \(\pi \subseteq \pi' \) implies \(\pi \preceq \pi' \). Then it follows the conclusion. □

Theorem IV.3: If a function \(\mathcal{H} \) defined by (1) satisfies Postulate III.3, its conditional counterpart \(C^1 \) satisfies Postulate III.5.

Proof: \(\sigma \subseteq \sigma' \) implies \(\sigma_{A_i} \subseteq \sigma'_{A_i} \) for every \(A_i \in \pi \). Thus, \(\sigma_{A_i} \preceq \sigma'_{A_i} \) for every \(A_i \in \pi \). From Postulate III.3, \(\mathcal{H}(\sigma_{A_i}) \leq \mathcal{H}(\sigma'_{A_i}) \). It follows the conclusion immediately. □

Theorem IV.4: If a function \(\mathcal{H} \) defined by (1) satisfies Postulate III.3, its conditional counterpart \(C^2 \) satisfies Postulate III.5.
Proof: \(\sigma \subseteq \sigma' \) implies \((\pi \land \sigma) \subseteq (\pi \land \sigma') \). Then it follows that
\[
\mathcal{H}(\pi \land \sigma) - \mathcal{H}(\pi \land \sigma') \geq 0. \quad \text{Thus,} \quad C^1(\pi, \sigma) - C^1(\pi, \sigma') = \mathcal{H}(\pi \land \sigma) - \mathcal{H}(\pi \land \sigma') \geq 0.
\]

From the above theorems the definition of partition entropy is given as follows.

Definition IV.1: When a function defined by (1) satisfies Postulate III.3 and Postulate III.4, and its corresponding measure function \(\mathcal{M} \) is symmetric and expansible, it is a partition entropy.

V. Checking Conditions for Partition Entropy

A. When Conditional Entropy Defined as \(C^1 \)

Next we give a sufficient and necessary checking condition for any partition entropy when conditional entropy is defined as \(C^1 \). We first give the definition of concavity for functions of \(n \)-dimensional inputs as follows.

Definition V.1: Suppose \(X \subseteq \mathbb{R}^n \) is a convex set. \(f : X \to \mathbb{R} \) is concave if for any \(x, y \in X \), we have, for all \(\lambda \in (0, 1) \),

\[
f(\lambda x + (1 - \lambda)y) \geq \lambda f(x) + (1 - \lambda)f(y).
\]

A direct property of concave functions is: if \(f : X \to \mathbb{R} \) is concave in a convex set \(X \subseteq \mathbb{R}^n \), for any \(x_1, \ldots, x_m \in X, \lambda_1, \ldots, \lambda_m \in (0, 1) \) and \(\sum_{i=1}^m \lambda_i = 1 \), we have

\[
f\left(\sum_{i=1}^m \lambda_i x_i\right) \geq \sum_{i=1}^m \lambda_i f(x_i).
\]

Lemma V.1. [6]: If a function \(\mathcal{H} \) defined by (1) is concave and its corresponding measure function is symmetric, it is Schur-concave.

Lemma V.2: When conditional entropy is defined as \(C^1 \), if and only if its corresponding \(\mathcal{H} \) is concave, it satisfies Postulate III.4.

Proof \(\Rightarrow \): Let \(\pi = \{A_1, \ldots, A_{i-1}, A_i, A_{i+1}, \ldots, A_m\} \), \(\pi' = \{A_1, \ldots, A_{i-1}, A_i', A_{i+1}, \ldots, A_m\} \), and let \(A_{i-1}' = A_i' \cup A_i, A_i' = A_i', \) and \(\sigma = \{B_1, \ldots, B_m\} \). And let \(\frac{|A_k|}{|A|} = a_{ik} \) and \(\lambda_i = \frac{|A_i'|}{|A|}, \) thus \(\frac{|A_k|}{|A|} = \sum_{i=1}^m \lambda_i a_{ik} \) for \(k = 1, \ldots, m \) and \(i = 1, \ldots, n \). Because \(\mathcal{H} \) is concave and \(\mathcal{M} \) is the measure function of \(\mathcal{H} \), it follows:

\[
\mathcal{M}\left(\sum_{i=1}^m \lambda_i a_{ik} \cdot \sum_{j=1}^n a_{ij}\right) \geq \sum_{i=1}^m \lambda_i \mathcal{M}\{a_{ik}\}.
\]

Because \(\mathcal{M}(\sum_{i=1}^m \lambda_i a_{ik} \cdot \sum_{j=1}^n a_{ij}) = \mathcal{H}(\sigma_{A_k}) \) and \(\mathcal{M}(a_{ik}\cdot \sum_{j=1}^n a_{ij}) = \mathcal{H}(\sigma_{A_{ik}}) \), it follows:

\[
\mathcal{H}(\sigma_{A_k}) \geq \sum_{i=1}^m \lambda_i \mathcal{H}(\sigma_{A_{ik}}), \quad \text{for} \quad k = 1, \ldots, m.
\]

Then

\[
\sum_{k=1}^m \frac{|A_k|}{|A|} \mathcal{H}(\sigma_{A_k}) \geq \sum_{k=1}^m \sum_{i=1}^m \frac{|A_k|}{|A|} \mathcal{H}(\sigma_{A_{ik}}).
\]

It follows that

\[
C^1(\pi, \sigma) \leq C^1(\pi', \sigma).
\]

Corollary V.1: Let \(f : [0, 1] \to \mathbb{R}, M(p_1, \ldots, p_m) = \sum_{i=1}^m f(p_i) \) be the measure function of a function \(\mathcal{H} \) (defined by (1)) and \(f(0) = 0 \). When conditional entropy is defined as \(C^1 \), if \(f \) is concave in \([0, 1], \mathcal{H} \) is a partition entropy.

Proof: By Lemma V.1, Lemma V.2 and the definition of partition entropy, it holds directly.

Theorem V.1: When conditional entropy is defined as \(C^1 \), if and only if its corresponding \(\mathcal{H} \) is concave and the measure function \(\mathcal{M} \) of \(\mathcal{H} \) is symmetric and expansible, \(\mathcal{H} \) is a partition entropy.

B. When Conditional Entropy Defined as \(C^2 \)

Next we give a sufficient checking condition for any partition entropy when conditional entropy is defined as \(C^2 \). For convenience and clarity, we first give the following definition.

Definition V.2: A function \(f : [0, 1] \to \mathbb{R} \) is called additivity-concave if for any \(n \in \mathbb{N}, k \in \mathbb{N} \) the following inequality is satisfied:

\[
f(s) + f(t) - f(s+t) \geq \sum_{i=1}^n f\left(a_i s_i + f(b_i t_i) - f(a_i s_i + b_i t_i)\right)\]

where \(\sum_{i=1}^n a_i = \sum_{i=1}^n b_i = 1, 0 \leq s_i \leq 1 \leq t \leq 1, 0 \leq s_i \leq 1, \) and \(a_i \geq 0, b_i \geq 0 \) for \(i = 1, \ldots, n \).

Lemma V.3: Let \(\pi = \{A_1, A_2, \ldots, A_m\} \). When conditional entropy is defined as \(C^2 \) and \(f(0) = 0 \), if and only if \(f \) is additivity-concave, \(\mathcal{H}(\pi) = \sum_{i=1}^m f\left(\frac{|A_i|}{|A|}\right) \) satisfies Postulate III.4.

Proof: First, because \(\mathcal{H}(\pi) = \sum_{i=1}^m f\left(\frac{|A_i|}{|A|}\right), \mathcal{H}(\pi) \) is symmetric. Let \(\pi' = \{A_1 \cup A_2, \ldots, A_m\}, A_i = \{B_1, B_2, \ldots, B_n\}, \) and \(\sigma = \{B_1, B_2, \ldots, B_n\} \). And let \(b_i = \frac{|B_i|}{|A_i|} \) for \(i = 1, \ldots, n \).

\[
C^2(\pi', \sigma) - C^2(\pi, \sigma) = \sum_{i=1}^n [f(a_i) + f(b_i) - f(a_i + b_i)]
\]

\[
= \sum_{i=1}^n [f(a_i s_i + f(b_i t_i) - f(a_i s_i + b_i t_i)]
\]

\[
\Rightarrow:
\]

if \(f \) is additivity-concave, then \(C^2(\pi', \sigma) - C^2(\pi, \sigma) \geq 0 \), which means that the combination of any two blocks in the condition partition will increase the conditional entropy. Thus, it satisfies Postulate III.4.

\(\Leftarrow: \) trivial.

Theorem V.2: Suppose a function \(f : [0, 1] \to \mathbb{R} \) is continuous and concave, \(f(0) = 0 \), the second derivative \(f'' \) exists in \((0, 1)\) and is continuous in \((0, 1)\). And \(f \) satisfies the following inequality:

\[
f''(u) + f''(v) \leq f''(u + x) + f''(v + x).
\]

whenever \(u, v, x, y \in (0, 1), u + x < 1, v + y < 1, u + v + x + y < 1 \). Let \(\pi = \{A_1, A_2, \ldots, A_m\} \). Then \(\mathcal{H}(\pi) = \sum_{i=1}^m f\left(\frac{|A_i|}{|A|}\right) \) is a partition entropy when its conditional counterpart is defined as \(C^2 \).
VI. EXAMPLES OF PARTITION ENTROPY

This section gives some examples of partition entropy with constraints from the two definitions of conditional entropy \mathcal{C}^1 and \mathcal{C}^2, respectively. All these examples are under the following assumption: let $\pi = \{A_1, \ldots, A_n\}$ be a partition of a set A, the probability distribution vector attached to π be $P(\pi) = (p_1, \ldots, p_n)$, where $p_i = \frac{|A_i|}{|A|}$ for $1 \leq i \leq n$.

A. Examples With the Constraints From the Conditional Entropy \mathcal{C}^1

The examples in this subsection are partition entropies when their conditional counterparts are defined as \mathcal{C}^1.

Example 1 (The Shannon Entropy):
$\mathcal{H}(\pi) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i} \pi$ is a partition entropy.

Example 2 (\cite{16}): $\mathcal{H}(\pi) = \sum_{i=1}^{n} p_i e^{1-r_i}$ is a partition entropy. A generalized form of this partition entropy is $\mathcal{H}(\pi) = \sum_{i=1}^{n} p_i (e^{1-r_i} + b)$, where $a, b \in \mathbb{R}$.

Example 3: $\mathcal{H}(\pi) = \sum_{i=1}^{n} p_i (1 - p_i)$ is a partition entropy. Its conditional counterpart, defined as \mathcal{C}^1, is referred to as the Gini Index in \cite{17}. A generalized form of this partition entropy is $\mathcal{H}(\pi) = \sum_{i=1}^{n} a_1 p_i^3 + a_2 p_i^2 + a_3 p_i$, where $a_1, a_2, a_3 \in \mathbb{R}$, $(a_1 \geq 0 \land a_2 \geq 0 \land a_2 \leq 0)$ or $(a_1 \leq 0 \land a_2 \leq 0)$.

Example 4 (\cite{18,19}): When $\beta > 1$, $\mathcal{H}(\pi) = k(1 - \sum_{i=1}^{n} p_i^\beta)$ is a partition entropy, where $k \in \mathbb{R}_{>0}$.

Example 5 (\cite{18,19}): When $0 < \beta < 1$, $\mathcal{H}(\pi) = k(\sum_{i=1}^{n} p_i^\beta - 1)$ is a partition entropy, where $k \in \mathbb{R}_{>0}$.

Example 6: $\mathcal{H}(\pi) = 1 - \max_{i=1}^{n} p_i$ is a partition entropy. Its conditional counterpart is referred to as the Goodman-Kruskal coefficient in \cite{20,21}.

By Corollary V.1, Examples 1 through 5 are proved to be partition entropies. Because $\max_{i=1}^{n} p_i$ is convex in $[0, 1]^n$ for any $n \in \mathbb{N}_{>0}$, Example 6 is easily proved to be a partition entropy by Theorem V.1.

B. Examples With the Constraints From the Conditional Entropy \mathcal{C}^2

The examples in this subsection are partition entropies when their conditional counterparts are defined as \mathcal{C}^2.

Example 1: The Shannon entropy is also a partition entropy when its conditional counterpart is defined as \mathcal{C}^2.

Example 2: $\mathcal{H}(\pi) = \sum_{i=1}^{n} p_i (1 - p_i)$ is a partition entropy. Its conditional counterpart defined as \mathcal{C}^2 is presented in \cite{22,23}. A generalized form of this partition entropy is $\mathcal{H}(\pi) = \sum_{i=1}^{n} a_1 p_i^3 + a_2 p_i^2 + a_3 p_i$, where $a_1, a_2, a_3 \in \mathbb{R}$, $(a_1 \leq 0 \land a_2 \leq 0)$.

Example 3: When $\beta > 2$, $\mathcal{H}(\pi) = k(1 - \sum_{i=1}^{n} p_i^\beta)$ is a partition entropy, where $k \in \mathbb{R}_{>0}$.

The Shannon entropy satisfy the sufficient condition in Theorem V.2, thus it is a partition entropy when the conditional entropy is defined as \mathcal{C}^2. The results in Examples 2 and 3 can be easily proved by Corollary V.2.

VII. CONCLUSION

In this correspondence, the monotonicity properties of conditional entropy are formalized in Postulate III.4 (monotonicity in conditional partition argument of C) and III.5 (dual monotonicity in decision partition argument of C). We add these properties of conditional entropy to the definition of partition entropy, and reduce the redundancies among all the inequality postulates. This new definition of partition entropy is more strict than the previous one \cite{16}, which is Schur-concave only. The main theoretical contributions of this paper are Theorems IV.3 and IV.4, Lemma V.2, Theorems V.1 and V.2. Theorems IV.3 and IV.4 show that the dual monotonicity in the decision partition argument of conditional entropy (defined as both \mathcal{C}^1 and \mathcal{C}^2) is a property of a Schur-concave function. Lemma V.2 demonstrates that the monotonicity in the condition partition argument of the conditional entropy \mathcal{C}^1 is actually equivalent to the concavity of its partition entropy. Theorem V.1 gives a sufficient and necessary condition for any partition entropy when conditional entropy is defined as \mathcal{C}^1, while the condition in Theorem V.2 are sufficient, but not necessary for any partition entropy when conditional entropy is defined as \mathcal{C}^2. These results present the mathematical insights into monotonicity properties of conditional entropy, provide the convenient and unified checking methods for any partition entropy. It should be noted that it is still an open problem to find the sufficient and necessary condition for any partition entropy when conditional entropy is defined as \mathcal{C}^2, which is actually the sufficient and necessary condition for additivity-concave functions.

The theorems in this paper focus on partitions of finite sets, which can be naturally defined by grouping objects with common values in certain attributes and are widely used in Machine Learning. They illuminate a family of partition entropies, which can be used as heuristics in the algorithms of Machine Learning. The existence of various types of entropies suggests that different entropies should be used to produce rather distinct patterns for classification and clustering.

APPENDIX I

Lemma I.1: A function $f : [0, 1] \rightarrow \mathbb{R}$ is additivity-concave if and only if the inequality (6) holds when $n = 2$.

Proof:

\(\Rightarrow: \) Obvious.
\(\Leftarrow: \) Suppose the inequality (6) holds when $n = 2$. We prove by induction on n that (6) holds for any positive integer n. We assume that the inequality (6) is satisfied when $n = k - 1$, then when $n = k$

\[
\mathcal{H}(\pi) \geq \sum_{i=1}^{k} [f(a_{i}s) + f(b_{i}t) - f(a_{i}s + b_{i}t)]
\]

where (7) follows from the condition that the inequality holds when $n = 2$ and (8) follows from the inductive assumption.

Proof:

Directly by Lemma V.3 and Theorem I.1 in the Appendix.

Corollary V.2: Suppose a function \(f : [0, 1] \rightarrow \mathbb{R}, f(0) = 0, f\) is continuous on \([0, 1], \) the third derivative \(f'''(x) \leq 0\) for any \(x \in (0, 1).\) Let \(\pi = \{A_1, A_2, \ldots, A_n\}.\) Then \(\mathcal{H}(\pi) = \sum_{i=1}^{n} f(\frac{|A_i|}{|A|})\) is a partition entropy when its conditional counterpart is defined as \mathcal{C}^2.

Proof: Directly by Lemma V.5 and Corollary I.1 in the Appendix.
Lemma I.1 suggests that A function $f : [0, 1] \to \mathbb{R}$ is additivity-concave if and only if the following inequality holds:

$$
\begin{align*}
&f(s) + f(t) - f(s + t) \\
&\quad \geq f(a(s) + f(b(1 - s)) + f(1 - a)s) + f((1 - a)s + (1 - b)t) \\
&\quad - f((1 - a)s + (1 - b)t)
\end{align*}
$$

(9)

where $0 \leq a, b \leq 1, 0 \leq s \leq 1, 0 \leq t \leq 1, s + t \leq 1$.

Lemma I.2: Suppose a function $f : [0, 1] \to \mathbb{R}$ is continuous and concave, $f(0) = 0$, the second derivative f'' exists in $(0, 1)$ (thus $f'' \leq 0$ in $(0, 1)$) and is continuous in $(0, 1)$. If f satisfies the following inequality:

$$
\begin{align*}
&[f''(u) + f''(v)] \cdot [f''(x) + f''(y)] \\
&\quad \leq [f''(u) + f''(v) + f''(x) + f''(y)]
\end{align*}
$$

(10)

whenever $u, v, x, y \in (0, 1), u + x < 1, v + y < 1, u + v < 1, x + y < 1$. Then f satisfies (9).

Proof: First, we prove a weaker result: under the hypotheses of the Lemma I.2, if f satisfies the following inequality instead of (10) (notice the small difference between $< \leq$)

$$
\begin{align*}
&[f''(u) + f''(v)] \cdot [f''(x) + f''(y)] \\
&\quad < [f''(u) + f''(v) + f''(x) + f''(y)]
\end{align*}
$$

(11)

then f satisfies (9).

For fixed $s, t \in [0, 1]$, we define a function on $[0, 1] \times [0, 1]$

$$
\begin{align*}
H(a, b) &= f(a(s) + f(b(1 - s)) + f((1 - a)s + (1 - b)t)
\end{align*}
$$

(12)

where $a, b \in [0, 1]$.

Since $s + t \leq 1, s = 1$ if $t = 0$ and $s = 0$ if $t = 1$. It is obvious that the inequality (9) holds if $s = 1$ and $t = 0$ or $t = 1$ and $s = 0$. In the following we assume that $s, t \in (0, 1)$.

When $a = 1, H(1, b) = f(s) + f(b) - f(s + b) + f(0), \frac{\partial^2 H(1, b)}{\partial b^2} = t\frac{f''(b) - tf''(s + b)}{s + b}$, because f is concave, $f'' \leq 0$, which means f' is a decreasing function on $(0, 1)$. It follows that $\frac{\partial^2 H(1, b)}{\partial b^2} \geq 0$. Thus, $H(1, b)$ is increasing as a function of b, and the following inequality holds:

$$
\begin{align*}
H(1, b) \leq H(1, 1) = f(s) + f(t) - f(s + t) + f(0)
\end{align*}
$$

(13)

When $a = 0, H(0, b) = f(s) + f((1 - b)t) - f(s + (1 - b)t) + f(0)$.

Using the similar method, we can prove that $H(0, b)$ is decreasing as a function of b, and the following inequality holds:

$$
\begin{align*}
H(0, b) \leq H(0, 0) = f(s) + f(t) - f(s + t) + f(0)
\end{align*}
$$

(14)

Using similar methods, we can also prove that

$$
\begin{align*}
&H(a, b) \leq f(s) + f(t) - f(s + t) \\
&H(a, 0) \leq f(s) + f(t) - f(s + t).
\end{align*}
$$

(15)

(16)

From (13), (14), (15) and (16), we see that $H(a, b) \leq f(s) + f(t) - f(s + t)$ holds when (a, b) lies in the boundary of $[0, 1] \times [0, 1]$. Since H is continuous in $[0, 1] \times [0, 1]$, it reaches its maximum at the boundary of $[0, 1] \times [0, 1]$ if H can not reach its maximum in the interior of $[0, 1] \times [0, 1]$. In that case (9) holds. In the following we shall prove that if f satisfies the inequality (11), then H can not reach its maximum in $(0, 1) \times (0, 1)$.

If f satisfies the inequality (11), then

$$
\begin{align*}
&[f''(as) + f''((1 - a)s)] \cdot [f''(bt) + f''((1 - b)t)] \\
&< [f''(as) + f''((1 - a)s) + f''(bt) + f''((1 - b)t)]
\end{align*}
$$

(17)

With direct calculations, it follows from the inequality (17) that

$$
\begin{align*}
\det \begin{bmatrix}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y^2} \\
\frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial y}
\end{bmatrix} < 0.
\end{align*}
$$

(18)

Since the determinant of the Hessian matrix

$$
\begin{align*}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y^2} \\
\frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial y}
\end{align*}
$$

of H is negative in $(0, 1) \times (0, 1)$, this matrix must be indefinite, and thus H can not reach its maximum in $(0, 1) \times (0, 1)$. Thus we have proved the weaker result we claim at the beginning of the proof.

Next, we will prove the lemma under the condition (10). Now f satisfies (10). We take any continuous function $g : [0, 1] \to \mathbb{R}$ with the following properties: $g(0) \leq 0, g'(x) < 0, g''(x) \leq 0$ for any $x \in (0, 1)$. (Such a g' exists, for instance, we may set $g(x) = -x^2$.) Then g satisfies (11). We shall show that $f + g$ satisfies (11). For fixed u, v, x, y, define

$$
\begin{align*}
D(f) &= [f''(u) + f''(v) + f''(x) + f''(y)] \\
&\quad \cdot [f''(u + x) + f''(v + y)] - [f''(u) + f''(v)]
\end{align*}
$$

(19)

Similarly we define $D(g), D(f + g)$. It is obvious that $D(f) \geq 0, D(g) > 0$.

$$
\begin{align*}
D(f + g) &= D(f) + D(g) + [f''(u) + f''(v) + f''(x) + f''(y)]
\end{align*}
$$

(20)

So $f + g$ satisfies (11), and thus satisfies (9). Since for any positive integer m, the function $\frac{\partial}{\partial x}$ satisfies the same conditions as g does, (9) also holds for $f + \frac{\partial}{\partial x}$. Taking the limit

$$
\lim_{m \to \infty} f + \frac{\partial}{\partial x} = f
$$

we see that (9) holds for f. Now the result is established. □

Theorem I.1: If a function $f : [0, 1] \to \mathbb{R}$ satisfies all the hypotheses of Lemma I.2, f is additivity-concave.
Proof: Directly by Lemma I.1 and Lemma I.2. □

Corollary I.1: Let \(f : [0, 1] \to \mathbb{R} \) be a continuous function, \(f(0) \leq 0 \), the third derivative \(f''' \) exists in \((0, 1)\), \(f'''(x) \leq 0 \) and \(f''(x) \leq 0 \) for any \(x \in (0, 1) \). Then \(f \) is additivity-concave.

Proof: If \(f'''(x) \leq 0 \), then \(f'' \) is decreasing function. Combining \(f'' \leq 0 \), the inequality (10) is easily verified. By Lemma I.2, \(f \) is additivity-concave. □

ACKNOWLEDGMENT

The authors wish to acknowledge the careful and judicious review of the anonymous reviewers and the editor, which helped them to greatly improve the presentation and substance of this correspondence. Ping Luo would like to acknowledge the judicious observations of Dr. Shihwei Ye from the School of Information Science and Engineering, Graduate School of the Chinese Academy of Sciences. Kevin Li would like to express his appreciation to the Wang Kuan Cheng Science Foundation, Chinese Academy of Sciences, for the funding that enabled him to conduct this research.

REFERENCES

Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable

Kenji Nakagawa, Member, IEEE

Abstract—In this correspondence, we give a sufficient condition for the exponential decay of the tail probability of a nonnegative random variable. We consider the Laplace–Stieltjes transform of the probability distribution function of the random variable. We present a theorem, according to which if the abscissa of convergence of the LS transform is negative finite and the real point on the axis of convergence is a pole of the LS transform, then the tail probability decays exponentially. For the proof of the theorem, we extend and apply so-called a finite form of Ikehara’s complex Tauberian theorem by Graham–Vaaler.

Index Terms—Complex Tauberian theorem, exponential decay, Graham–Vaaler’s finite form, Laplace transform, tail probability of random variable.

I. INTRODUCTION

The purpose of this correspondence is to give a sufficient condition for the exponential decay of the tail probability of a nonnegative random variable. For a nonnegative random variable \(X \), \(P(X < x) \) is called the tail probability of \(X \). The tail probability decays exponentially if the limit

\[
\lim_{x \to \infty} \frac{1}{x} \log P(X > x)
\]

exists and is a negative finite value.

For the random variable \(X \), the probability distribution function of \(X \) is denoted by \(F(x) = P(X \leq x) \) and the Laplace–Stieltjes transform of \(F(x) \) is denoted by \(\varphi(s) = \int_0^\infty e^{-sx}dF(x) \). We will give a sufficient condition for the exponential decay of the tail probability \(P(X > x) \) based on analytic properties of \(\varphi(s) \).

In [11], we obtained a result that the exponential decay of the tail probability \(P(X > x) \) is determined by the singularities of \(\varphi(s) \) on its axis of convergence. In this correspondence, we investigate the case where \(\varphi(s) \) has a pole at the real point of the axis of convergence, and reveal the relation between analytic properties of \(\varphi(s) \) and the exponential decay of \(P(X > x) \).

The results obtained in this correspondence will be applied to queueing analysis. In general, there are two main performance measures of queueing analysis, one is the number of customers \(Q \) in the system and the other is the sojourn time \(W \) in the system. \(Q \) is a discrete random variable and \(W \) is a continuous one. It is important to evaluate the tail probabilities \(P(Q > q) \) and \(P(W > w) \) for designing the buffer size or link capacity in communication networks. Even in the case that the probability distribution functions \(P(Q \leq q) \) or \(P(W \leq w) \) cannot be calculated explicitly, their generating functions \(Q(z) \equiv \sum_{q=0}^\infty P(Q = q)z^q \) or \(W(s) \equiv \sum_{w=0}^\infty e^{-sw}dP(W \leq w) \) can be obtained explicitly in many queues. Particularly, in \(M/G/1 \) queue,