TrustOTP: Transforming Smartphones into Secure One-Time Password Tokens

He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing

Presented by Fengwei Zhang
Outline

• Introduction
• Motivation
• Architecture
• Implementation
• Evaluation
• Summary
Outline

• Introduction
• Motivation
• Architecture
• Implementation
• Evaluation
• Summary
One-time Password (OTP)

• A password that is valid for only one login session or transaction
 – Not vulnerable to reply attacks
 – Widely used in Two-factor Authentication
 – HOTP (Hash-based OTP)
 • Event triggered, key & counter
 – TOTP (Time-based OTP)
 • Time synchronized, key & clock
 – Hardware token & software App
Existing Solutions

- **Hardware-based**
 - RSA SecurID
 - Yubikey

- **Software-based**
 - Google authenticator
 - McAfee one-time password
Outline

• Introduction
• **Motivation**
• Architecture
• Implementation
• Evaluation
• Summary
Limitation

• Hardware-based --- not flexible
 – Unprogrammable
 – Expensive

• Software-based --- not secure
 – Vulnerable to external attacks
Goals

• Confidentiality
 – Malicious mobile OS cannot compromise the keying material (seed) in the OTP generator
 – It cannot read the OTP

• Reliability and Availability
 – Trusted inputs (e.g., clock time) for the OTP generator
 – Trusted display
 – OTP works even if mobile OS crashes

• Small TCB
TrustZone-related Work

• TrustICE (Sun et al.[1])
 – Isolated Computing Environment in the normal domain
• SeCReT (Jang et al.[2])
 – Secure channel between secure domain and normal application
• Hypervision (Azab et al.[3])
 – Real-time kernel protection in the normal domain
• TrustDump (Sun et al.[4])
 – Reliable Memory Acquisition of the mobile OS
• Smartphone as location verification token for payments (Marforio et al.[5])
• Trusted Language Runtime for trusted applications in the secure domain (Santos et al.[6])
Outline

• Introduction
• Motivation
• Architecture
• Implementation
• Evaluation
• Summary
TrustOTP Architecture

– In the secure domain
– Shared I/O device with the rich OS
– Reliable switch between domains

Diagram

Normal Domain
- Non-secure Permanent Storage
- Non-secure Framebuffer
- Touchscreen Driver

Rich OS
- Framebuffer Driver

Secure Domain
- Secure Permanent Storage
- Secure Framebuffer
- Secure Display Controller
- Secure Touchscreen Driver
- Secure Clock
- Secure Counters

TrustOTP
- OTP Generator
- TOTP
- HOTP

Reliable Switch
- User Input of the Rich OS
- Display with Touchscreen
- User Input of TrustOTP
Challenges

• Secure input and display though shared touchscreen
• Reliable switch
• Generator protection
 – Static code
 – Execution environment
• Availability
Outline

• Introduction
• Motivation
• Architecture
 • Implementation
• Evaluation
• Summary
Security Analysis

• Information leakage
 – Generated OTPs
 – Shared keys

• Control flow tampering
 – Code integrity
 – Execution integrity (e.g., Interrupt)

• Denial-of-service
 – Switch between domains
 – Static & dynamic code
 – Display
Boot Sequence

- Secure storage
 - MicroSD card
- Memory Isolation
 - TZASC (TrustZone Address Space Controller)
 - Watermark mechanism
 - Secure boot
- Secure bootloader
 - Non-secure bootloader
 - Rich OS
TrustOTP Triggering

• Reliable switch
 – Non-maskable interrupt (NMI)
 • The rich OS cannot block or intercept
 – Secure Interrupt (FIQ)
 • The rich OS cannot manipulate
 – Interrupt source (configurable)
 • Physical button
 • Timer
OTP Generation

• Hash-based one-time password (HOTP)
 – Key, counter

• Time-based one-time password (TOTP)
 – Key, Clock

Listing 1: OTP Generation Functions

```c
int oath_hotp_generate (const char *secret,
    size_t secret_length,
    uint64_t moving_factor,
    unsigned digits,
    char *output_otp)

int oath_totp_generate (const char *secret,
    size_t secret_length,
    time_t now,
    unsigned time_step_size,
    unsigned digits,
    char *output_otp)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>secret</td>
<td>the secret key</td>
</tr>
<tr>
<td>secret_length</td>
<td>length of the secret Key</td>
</tr>
<tr>
<td>moving_factor</td>
<td>secure counter in HOTP</td>
</tr>
<tr>
<td>now</td>
<td>secure clock in TOTP</td>
</tr>
<tr>
<td>time_step_size</td>
<td>time period between two TOTPs</td>
</tr>
<tr>
<td>digits</td>
<td>length of the generated OTP</td>
</tr>
<tr>
<td>output_otp</td>
<td>the generated OTP</td>
</tr>
</tbody>
</table>
OTP Display

- Secure I/O
 - Display: IPU (Image Processing Unit) + LCD
 - Input: 4-wire resistive touchscreen
- User-friendly manner
 - Rich OS and TrustOTP run concurrently
 - Watchdog timer
 - 1.5 seconds / cycle
 - 0.5 second for display
 - 1 second for input 2~3 numbers
Outline

- Introduction
- Motivation
- Architecture
- Implementation
- Evaluation
- Summary
Evaluation

• Freescale i.MX53 QSB
 – A Cortex-A8 1GHz processor
 – 1GB DD3 RAM
 – 4GB microSD card
• Monsoon power monitor
 – Power measurement
 – Power logging
TrustOTP Performance

• Before OTP display (60.48 ms)

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Domain Switching</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>Context Saving</td>
<td>0.0006</td>
</tr>
<tr>
<td>3</td>
<td>TOTP/HOTP Generation</td>
<td>0.048/0.044</td>
</tr>
<tr>
<td>4</td>
<td>Background Matching</td>
<td>49.85</td>
</tr>
<tr>
<td>5</td>
<td>OTP Drawing</td>
<td>8.029</td>
</tr>
<tr>
<td>6</td>
<td>IPU Check</td>
<td>2.22</td>
</tr>
<tr>
<td>7</td>
<td>Framebuffer Replacement</td>
<td>0.28</td>
</tr>
</tbody>
</table>

• After OTP display (7.52 ms)

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flushing IPU & Rich OS Recovery</td>
<td>7.47</td>
</tr>
<tr>
<td>2</td>
<td>Domain Switching</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Impact on the Rich OS

- Rich OS vs. TrustOTP
- Anutu
 - CPU & RAM
 - I/O devices
- Vellamo
Power Consumption

- Rich OS
 - Average = 2,128 mW
- TrustOTP running
 - Average = 2,230 mW
- TrustOTP without display
Outline

• Introduction
• Motivation
• Architecture
• Implementation
• Evaluation
• Summary
Summary

• TrustOTP: Hardware-assisted OTP Token on smartphones
 – Security (confidentiality, integrity, availability)
 – Flexibility (various and multiple OTPs)

• Low performance overhead on the Rich OS
 – No need to modify the Rich OS
 – Low power consumption
References

