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Abstract

Signaling pathways are the primary means of regulating cell growth,
metabolism, differentiation and apoptosis. The de novo signaling pathway
reconstruction problem can be divided into two sub-problems: discovery
of pathway components and ordering the pathway components. While the
literature abounds with computational and biological approaches for discov-
ering pathway components, there has only been limited research on ordering
pathway components, despite its importance. The main biological approach,
genetic epitasis analysis, is limited by the cost and unavailability of mutants.
Existing computational approaches reconstruct the network from numerical
data (e.g., microarray gene expression profiles) which may be unreliable.
Consequently, these approaches are sensitive to data selection. Here we de-
scribe a new statistical approach to signaling network reconstruction exploit-
ing information about which genes belong to each pathway to reconstruct
the “gene regulation network topology” in the form of a first-order Markov
chain transition matrix. The approach naturally integrates information from
multiple data sources such as text literature and biological expert knowledge
and is not limited to the numerical and categorical data used by previous
approaches. The performance and stability of this approach follow directly
by the scale-free property of biological networks. We demonstrate the ad-
vantages of this approach over previous approaches using three well known
signaling pathways.

Keywords: Signaling Pathway, Network, Microarray, Proteomics, EM Algorithm

1.1 Introduction

In this chapter, we focus on estimating the order of genes along a pathway as-
suming the unordered terminal and intermediate pathway components are known.
Signaling pathways are the primary means of regulating cell growth, metabolism,
differentiation, and apoptosis. The sensing and processing of extracellular stim-
uli are mediated by signal transduction cascades: molecular circuits that seek to
detect, amplify, and integrate to generate responses such as changes in enzyme
activity, activation/deactivation of transcription factors, gene expression, or ion-
channel activity [1]. Biochemically, the extracellular signal is transmitted through a
series of molecular modifications (e.g. phosphorylation, dephosphorylation, acetyla-
tion, methylation) and interactions (e.g. protein-protein interaction, protein-DNA
interaction).

Recent bioinformatics research efforts have shifted from single gene analysis to
signaling pathway and network analysis. With the evolution of signaling pathway
research methods, the definition of such pathways also evolves. In earlier decades
when genetic epistatic experiments were the predominant approach to reconstructing
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signaling pathways, a signaling pathway was defined as “the cascade of processes
by which an extracellular signal (typically a hormone or neurotransmitter) interacts
with a receptor at the cell surface, causing a change in the level of a second messenger
for example calcium or cyclic AMP and ultimately effects a change in the cells
functioning” [1]. In the post-genomic era, simultaneously quantifying the abundance
levels of thousands of biomolecules enables “high throughput” signaling pathway
reconstruction. Lu et al. define a signaling pathway as a specified group of genes
that have coordinated association with a phenotype of interest [2]. Subramanian et
al. give a more general definition of signaling pathways as groups of genes that share
common biological function, chromosomal location, or regulation [3]. Subramanian’s
approach looks at a hypothetical set of genes and detects significant enrichment
toward the top of a rank-ordered list. Both of these studies give the analyst great
power toward solving the first sub-problem in signaling pathway reconstruction, i.e.,
the discovery of pathway components. However, in the past, epistatic relationships
among pathway components have been ignored. These relationships are the key to
understanding the underlying biological mechanism. In this chapter we describe a
framework for addressing the second signaling pathway reconstruction sub-problem
– that of ordering the pathway components. We propose a new definition of signaling
pathway as a series of gene interactions that lead to an endpoint biological function
from a membrane receptor.

There are abundant biological and/or computational approaches to discover-
ing signaling pathway components. Biological approaches include traditional low
throughput protein-protein interaction analysis such as immunoprecipitation, west-
ern blot and pull-down assay and high throughput protein-protein interaction anal-
ysis such as yeast two-hybrid assay. Computational approaches mainly focus on
clustering genes according to function. Examples include network constrained clus-
tering and other methods [4], [5], [6], [7], [8], [9]. These analyses have led to discovery
of many signaling pathway components. The ultimate goal of pathway reconstruc-
tion analysis is to decipher the order in which the signal is transmitted. However,
despite its importance, there has only been limited research on ordering pathway
components.

In the classical approach to pathway discovery, called genetic epistasis analysis, a
pair of genes are mutated in the same strain and the phenotype of the double mutant
is compared with those of the corresponding single mutants. The predominant
phenotype defines the epistatic relationship between genes [10]. The success of this
approach is contingent on the measured phenotype, and therefore, the analysis of
different pathways requires a large variety of experiments. For example, satisfactory
answers to the following questions are prerequisites to effective epistasis analysis:
What kind of phenotype should be measured? How to quantify this phenotype (e.g.,
morphology)? In addition, as pointed out by Van Driessche et al. [11], “the rules
of epistasis cannot be applied consistently if the experimental procedures are not
identical for all pairs of genes in a certain pathway.”
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In recent work, Van Driessche et al. [11] propose a new epistasis analysis using
microarray gene expression profiles as a more objective phenotype. Their approach
greatly relaxes the stringent requirement of experimental expertise required for clas-
sical epistasis analysis because the knowledge of relationships between gene function
and phenotype is not essential. They reconstruct part of the Protein Kinase A Path-
way by making ten combinations of single or double mutations in six genes. The
approach is limited to reconstructing very small size pathways due to the combina-
torial explosion of the number of mutations needed. Additional mutations are either
prohibited by cost or by possibly lethal effects. In addition, the approach implic-
itly requires that the mutations have significant gene expression variation so that
the epistatic relationship can be determined using a computational method without
requiring replicated experiments.

In the last decade we have witnessed a rapid accumulation of high through-
put genomic data. However, techniques for reliable knowledge extraction from this
data lag far behind. Instead of acquiring new data, Liu and Zhao propose a purely
computational approach to reconstructing the order of pathway components from
existing genomic and proteomic data [12]. Assuming all terminal and intermediate
components (unordered) are known, each permutation of the pathway components
is scored according to the sum of a function based on gene expression data and
a separate function based on protein-protein interaction data. The gene expres-
sion score tests whether the correlation between adjacent gene pairs is significantly
higher than random gene pairs in the pathway using a hypergeometric distribution
model [12]. The protein-protein interaction score is based on the binomial distribu-
tion modelling whether adjacent proteins interact. The parameter (false negative
rate) was estimated from protein-protein interactions in the Database of Interacting
Proteins (DIP). Using the simplified Mitogen Activated Protein Kinase (MAPK)
pathway as an example, they report that the “known” MAPK pathway is scored
the second highest among all pathway permutations, which is much better than that
obtainable using genomic data or proteomic data alone.

Being probably the first pure computational approach of its kind, the advantage
of this approach is that it exploits existing data. The approach of Liu and Zhao also
provides compelling evidence of the advantages of integrating multiple data sources.
However, their approach also has a number of limitations:

• It heavily relies on the availability of high throughput data.

• It integrates only numeric data sources. Many kinds of non-numerical meta
information, e.g. published literature and biologist’s expert knowledge, are
difficult to include in the current probability model.

• Similar to the classical epistasis analysis, the approach is limited to recon-
structing nonlethal signaling pathways.
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• The approach is also limited to ordering short pathways due to the computa-
tional complexity introduced by the permutation step.

Here we describe a new maximum likelihood approach that exploits information
about which genes are in each pathway to reconstruct a “signal transduction network
topology” in the form of a first-order Markov chain transition matrix. A graphical
depiction of the system is shown in Figure 1.1. Information on the genes composing
a pathway can be integrated from multiple data sources (solid curves in Fig. 1.1.
Non-zero transition probabilities potentially correspond to directed edges in the
network. We use this probability transition matrix to determine the maximum
likelihood order of genes in each pathway and obtain a network from the ordered
pathways. The proposed technique naturally combines pathway information (both
composition information and epistasis information) that are derived from multiple
data sources. The technique, termed network inference from co-occurrences (NICO),
was originally developed by Rabbat et al. [13] for tomographic reconstruction of
telecommunications networks. We refer the interested reader to [13] for the complete
technical details.

To summarize, the features of this proposed techniques are:

• The unordered pathway composition information can be either integrated from
high throughput experiments or from meta-information, as shown in Fig. 1.1.

• Prior information on pathway epistasis can be easily integrated into the first-
order Markov model in the format of prior on the transition matrix. For
example, we can easily take advantage of well-known relationships such as
the fact that kinase and phosphatase appear in front of their substrate in the
pathways.

• Our approach scales to large pathways using Monte Carlo importance sam-
pling.

It is often the case that available pathway composition information and prior
epistatic information are not sufficient to resolve ambiguous epistasis relationships
among a subset of genes. Our method also provides confidence coefficients for each
potential ordering of genes in a pathway, and these confidences can be used to sug-
gest future experiments to the biologist to resolve the ambiguity. More specifically,
more than one pathway order may have the same confidence as measured by the
likelihood score. Comparing these equally likely candidate pathways may allow bi-
ologists to identify the non-redundant set of genetic experiments which can resolve
the ambiguity (see dotted curves in Fig. 1.1). In this sense, the proposed technique
may be incorporated into a sequential design of experiments, resulting in significant
savings in experimental effort.
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Figure 1.1: The schematic representation of the signaling pathway reconstruction algo-
rithm. The starting pathway component is in red (left), and the ending pathway component
is in blue (right). Pathway components in the parenthesis are intermediate and unordered.
The solid lines represent the inputs to the algorithm (different sources of pathway informa-
tion). The dotted lines represent the outputs from the algorithm (the maximum likelihood
pathway(s)).

1.2 Methods

1.2.1 Mathematical Formulation of the Problem

This section outlines the network inference from co-occurrences (NICO) framework
for inferring network structure from incomplete observations. We assume the true
biological signaling pathway is an ordered path z = (z1, z2, . . . , zN ) where each zi

corresponds to a signaling protein. Mathematically, we model each ordered path as
a sample from a first-order Markov chain. As described above, most existing gene
expression analysis techniques identify pathway components without any informa-
tion about their order within the pathway. To account for the fact that we do not
directly observe order information, we model an observation y as a sample z from
the Markov chain, subjected to a random permutation τ , so that zt = yτt . Thus, the
permutation “shuffles” the elements of each pathway, obscuring the ordering. We re-
fer to such shuffled observations as co-occurrences because the observation x reflects
which signalling proteins “occur” in the pathway, without any order information.
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The true signaling network which we are trying to elucidate consists of an ensem-
ble of signaling pathways which can be viewed as a collection Y = {y(1),y(2), . . . ,y(T )}
of T independent samples of the Markov chain. The Markov chain is parameterized
by an initial state distribution, π, and a transition matrix, A. Each initial state
distribution parameter πi = P [z1 = i] for i ∈ S, where S = {1, . . . , |S|} is the
set of distinct pathway components (the states of the Markov chain) indexed using
the natural numbers and |S| is the number of components in the signalling network.
Similarly, the transition matrix parameters are Ai,j = P [zt = j|zt−1 = i] for i, j ∈ S.
These parameters must satisfy the constraints

∑

i∈S

πi = 1 and
∑

j∈S

Ai,j = 1. (1.1)

A collection of co-occurrences, Y may be obtained from multiple data sources;
e.g., cluster analysis of high throughput data, text literature mining, or biological
expert knowledge. To recover the signaling network topology from Y, we treat the
corresponding unobserved permutations, {τ (1), τ (2), . . . , τ (T )} as hidden variables
and describe an expectation-maximization (EM) algorithm for computing maximum
likelihood estimates of the Markov chain parameters. This approach, NICO, was ini-
tially developed for solving a similar problem of inferring the topology of a telecom-
munications network from co-occurrences [13]. In section 1.2.2 we introduce further
notation and review the standard approach to estimating parameters of a Markov
chain when fully ordered pathways are available. In section 1.2.3 we present the
EM algorithm for estimating Markov chain parameters from unordered pathways.
For relatively large pathways, we describe a Monte Carlo E-step that approximates
E-step computation (section 1.2.4). Finally, we discuss how to incorporate prior
pathway information (section 1.2.5).

1.2.2 Estimating a Markov Chain from Direct Observations

The sections 1.2.2, 1.2.3, 1.2.4, 1.2.5 are adapted in a large part from [13], to
which we refer the reader for further technical details. Our goal is to estimate the
Markov chain parameters π and A. It is convenient to introduce an alternative
representation for an ordered pathway: instead of z = (z1, z2, . . . , zN ) we write
w = (w1,w2, . . . ,wN ) where each wi is a length-|S| binary vector such that (wi,j =
1) ⇔ (zi = j). With this representation, we can write the log-likelihood of an
observation w as

log P [w|A,π] =
∑

i∈S

w1,i log πi +
N

∑

t=2

∑

i,j∈S

wt−1,iwt,j log Ai,j. (1.2)

Note that most of the terms in these sums are zero (any time w1,i = 0, wt−1,i = 0,
or wt,j = 0).
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Next, suppose we observe a collection of independent ordered pathways W =
{w(1), . . . ,w(T )}, where w(m) corresponds to a pathway of Nm elements. Maxi-
mizing the log-likelihood log P [W|A,π] =

∑T
m=1 log P [w(m)|A,π] under the con-

straints in Eqn. 1.1 leads to estimates

Âi,j =

∑T
m=1

∑Nm

t=2 w
(m)
t−1,iw

(m)
t,j

∑

j∈S

∑T
m=1

∑Nm

t=2 w
(m)
t−1,iw

(m)
t,j

(1.3)

π̂i =
1

T

T
∑

m=1

w
(m)
1,i . (1.4)

1.2.3 Estimating a Markov Chain from Shuffled Observations via
the EM Algorithm

Now, we would like to compute maximum likelihood estimates of the Markov chain
transition matrix A and initial state distribution π from a collection of unordered
co-occurrences Y = {y(1),y(2), . . . ,y(T )}. Corresponding to each co-occurrence y(m)

is a permutation τ (m). Again, it is convenient to introduce binary representations
for co-occurrences and permutations. Similar to before, instead of the co-occurrence
y = (y1, y2, . . . , yN ) we write x = (x1,x2, . . . ,xN ) where each xi is a binary vector
such that (xi,j = 1)⇔ (yi = j). Also, we represent each shuffling τ = (τ1, τ2, . . . , τN )
in terms of a N -by-N permutation matrix r so that (rt,t′ = 1) ⇔ (τt = t′). With
this notation the binary co-occurrence x and ordered path w are related via the
permutation matrix r via the expression

wt,i =

N
∏

t′=1

(

xt′,i

)rt,t′ , (1.5)

where we adopt the convention 00 = 1.

If, in addition to the collection co-occurrences X = {x(1),x(2), . . . ,x(T )}, we were
also given the corresponding permutation matrices R = {r(1), r(2), . . . , r(T )} then
we could undo the shufflings and apply the direct maximum likelihood procedure
outlined in the previous section. Since, in practice, we do not know the correspond-
ing permutations, we treat them as hidden variables and derive an EM algorithm,
modelling each permutation as being drawn from the uniform distribution on all
permutations of the appropriate length; i.e., if x(m) corresponds to a path of Nm

elements then r(m) is modelled as a random permutation matrix drawn uniformly
from the collection of all permutations of Nm elements, denoted by ΨNm.

The EM algorithm alternates between the expectation or E-step, which amounts
to estimating expected permutations for each path conditioned on the current pa-
rameter estimates, and the maximization or M-step, where the parameter estimates
are updated based on the expected permutations computed in the E-step. More
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precisely, in the E-step we compute sufficient statistics

ᾱ
(m)
t′,t′′ = E

[

Nm
∑

t=2

r
(m)
t,t′ r

(m)
t−1,t′′

∣

∣

∣

∣

∣

x(m), Â, π̂

]

(1.6)

=

∑

r∈ΨNm
rt,t′rt−1,t′′P [x(m)|r, Â, π̂]

∑

r∈ΨNm
P [x(m)|r, Â, π̂]

, (1.7)

and

r̄
(m)
1,t′ = E

[

r
(m)
1,t′

∣

∣

∣
x(m), Â, π̂

]

(1.8)

=

∑

r∈ΨNm
r1,t′P [x(m)|r, Â, π̂]

∑

r∈ΨNm
P [x(m)|r, Â, π̂]

, (1.9)

where each term P [x(m)|r, Â, π̂] is easily computed after using r to unshuffle x(m):

P [x(m)|r, Â, π̂] = P [y(m)|τ , Â, π̂] = π̂
y
(m)
τ1

Nm
∏

t=2

Â
y
(m)
τt−1

,y
(m)
τt

. (1.10)

Closed form expressions for the M-step updates are then given by

(

Âi,j

)

new
=

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

∑|S|
j=1

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

(1.11)

and

(π̄i)new =

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i

∑|S|
i=1

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i

. (1.12)

This procedure, along with the Monte Carlo and MAP variations described be-
low, are easily modified to handle the case when the endpoints of each pathway are
known, e.g., when membrane receptors and transcription factors are known.

1.2.4 Monte Carlo E-Step by Important Sampling

For a large pathway, the combinatorial nature of the equations (1.7) and (1.9),
that is, the need to sum over all permutations of the pathway, may render exact
computation impractical. We describe an importance sampling-based approxima-
tion version of the E-step which avoids this issue. Without loss of generality, we
focus on a particular length-N co-occurrence y = (y1, y2, . . . , yN ), dropping the su-
perscript (m) to lighten the notation. We also drop the hats from (Â, π̂) and use
simply (A,π) to denote the current Markov chain parameter estimates in the EM
algorithm.
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Intuitively, there are a large number of permutations, but typically only a
few of these permutations will contribute a non-negligible conditional probability
P [t|τ ,A,π]. The idea behind importance sampling is to sample high probability
permutations based on the current parameter estimates, and then combine these in
a statistically sound fashion.

The importance sampling procedure we propose sequentially samples a permuta-
tion in the following fashion, making intuitive use of the current parameter estimates,
A and π and the co-occurrence y.

Step 0: Let U = {1, 2, . . . , N} denote the set of elements remaining to be placed in
the permutation.

Step 1: For each j ∈ U set pj ∝ πj , normalized so that
∑

j∈U pj = 1. Sample an
element j from U according to the distribution {pj} just defined. Set τ1 = j

and update U ← U \ j. Let i = 2 denote the next position to be filled in the
permutation.

Step 2: For each remaining j ∈ U set pj ∝ Aτi−1,j , normalized so that
∑

j∈U pj = 1.
Sample an element j from U according to the distribution {pj} just defined.
Set τi = j. Update U ← U \ j and i← i + 1.

Step 3: Repeat step 2 until i = N + 1, at which the entire permutation has been
sampled.

Repeating this procedure L times yields L independent sample permutations,
τ 1, τ 2, . . . , τL, or in equivalent binary notation, r1, . . . , rL. Associate the reweight-
ing factor

zℓ =

N
∏

j=2

N
∑

k=j

Ay
τℓ
j−1

,y
τℓ
k

(1.13)

with the ℓth permutation. Then the Monte Carlo E-step approximations are given
by

α̂t′,t′′ =

∑L
ℓ=1

∑N
t=2 rℓ

t−1,t′′r
ℓ
t,t′zℓ

∑L
ℓ=1

∑N
t=2 zℓ

, (1.14)

r̂1,t′ =

∑L
ℓ=1 rℓ

1,t′zℓ
∑L

ℓ=1 zℓ

. (1.15)

Computing approximations in this fashion, with the reweighting terms, ensures that
the approximations α̂t′,t′′ converge to the exact values ᾱt′,t′′ almost surely as L →
∞. In fact, it can be shown that desirable properties of the EM algorithm are
preserved when L ∝ N4; i.e., when a polynomial complexity approximation scheme
is used, in contrast to exponential complexity required to perform the exact E-step
computation. See [13] for further details.
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1.2.5 Incorporating Prior Information

Prior information about the Markov chain parameters A and π can easily be incor-
porated into the algorithm by applying independent Dirichlet priors to each row of
the transition matrix and to the initial state distribution. Hence, we have

P [π|u] ∝

|S|
∏

i=1

πui−1
i (1.16)

P [A|v] ∝

|S|
∏

i=1

|S|
∏

j=1

A
vi,j−1
i,j , (1.17)

where the parameter ui and vi,j should be non-negative in order to have proper
priors. The larger that ui is relative to the other ui′ , i′ 6= i, the greater our prior
belief that pathway component i is a starting component of the pathway rather
than the others. Similarly, the larger vi,j relative to other vi,j′ for j′ 6= j, the more
likely we expect that, a prior, the signal is transmitted from pathway component i

to pathway component j relative to the transmissions from i to the other pathway
components.

Incorporating these priors into our model only results in a change to the M-step
of the EM algorithm. Instead of equations (1.11) and (1.12) which lead to maximum
likelihood estimates, we have

(π̂i)new =
ui +

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i

∑|S|
i=1

(

ui +
∑T

m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i

) , (1.18)

and

(Âi,j)new =
vi,j +

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,r′′x

(m)
t′′,ix

(m)
t′,j

∑|S|
j=1

(

vi,j +
∑T

m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

) . (1.19)

leading to maximum a posteriori (MAP) parameter estimates.

1.3 Results

Using three representative signaling pathways, we intend to show three useful prop-
erties of our approach: reconstruction of the order of genes in the pathway assuming
the intermediate and terminal components are known; ease of incorporating prior
knowledge in the form of a prior on the transition matrix; identifying the most
important missing information that prevents high confidence path order reconstruc-
tion. The latter will be useful for specifying the most informative future experiment
if needed (Fig. 1.1).
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1.3.1 Protein Kinase A Pathway

The protein kinase A (PKA) pathway is an essential signaling pathway for devel-
opment. The central component cyclic AMP (cAMP)-dependent protein kinase A
is able to phosphorylate a variety of proteins and thereby effect their activity. Mal-
function of this pathway leads to developmental arrest or attenuation, precocious
development and aberrant sporulation and germination [14], [11]. Van Driessche
et al. use this pathway to demonstrate a microarray based epistasis approach [11].
They reconstruct an incomplete pathway by making ten combinations of single or
double mutations in six genes. The relationships between several pairs of genes
can not be determined from their analysis. For example, the level of interaction
between acaA and pkaR is not tested because the corresponding mutations are not
analyzed or are difficult to make. Despite this missing information, our approach
is able to reconstruct the reported pathway based only on the information about
terminal components and the unordered intermediate components in each pathway
(Fig. 1.2, Fig. 1.3). This suggests that our techniques may enable biologists to recon-
struct pathways without having to perform exhaustive experiments on all pairwise
interactions.

PKA Pathway

, (pkaC, pkaR), 

, (pkaR, pka

acaA

regA

Development

CC), 

, (pufA, pkaC), 

Development

DevelopmentyakA

Figure 1.2: The (unordered) protein kinase A signaling pathway. Membrane receptors
are in red (left), and transcription factors are in blue (right). Activation or inhibition
information between pathway components are omitted. The pathway is mainly adapted
from Van Driessche et al. [11].

Since the protein kinase A pathway is a relatively small pathway, it is perhaps
not surprising that we are able to reconstruct it in a straightforward manner. For
larger pathways, available prior pathway composition information often only allows
the pathway be reconstructed up to a certain “low resolution”, i.e., up to certain
ambiguities in relative ordering within the pathway. Incorporating prior knowledge
can often help to reveal the order of the whole pathway or an ensemble of pathways;
i.e., a signaling network. In the next subsection we illustrate our methods on the
more complicated SAPK/JNK pathway.
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acaA

pkaR

pkaC Development

regA

yakA pufA

Figure 1.3: The protein kinase A signaling network topology reconstructed from unordered
pathway composition data using the methodology outlined in Sec. 1.2 (Fig. 1.2).

1.3.2 SAPK/JNK Pathway

Stress-activated protein kinases (SAPK)/Jun N-terminal kinases (JNK) are mem-
bers of the MAPK family and are activated by a variety of environmental stresses,
inflammatory cytokines, growth factors and GPCR agonists. Stress signals are de-
livered to this cascade by small GTPases of the Rho family (Rac, Rho, Cdc42) [15].
Similar to our study of the protein kinase A pathway, we attempt to reconstruct
pathway order based only on the terminal components and on unordered lists of
co-occurring intermediate pathway components (Fig. 1.4).

In the NICO framework, epistasis relationships of the pathway components are
fully defined by the probability transition matrix A. For the observed unordered
SAPK/JNK pathway, there may be multiple maximum likelihood estimates. For
example, the two estimates of A in Eq. 1.20 and Eq. 1.21 corresponding to two
possible epistasis relationships between MEKK and MKK that are equally likely.
The ordered row names are: “GF”, “RAS”, “CDC42”, “MEKK”, “MKK”, “JNK”,
“RAC”, “Rho”, “HPK”, “CS1”, “CS2”, “FASL”, “GCKs”, “OS”, “ASK1”. All-
zero rows correspond to the end-of-pathway components “JNK” and “RHO” (these
terminals do not emit signals), and probabilities in non-zero rows sum up to 1. We
incorporated prior information that the MEKK protein phosphorylates the MEK
protein [15] by setting parameter v4,5 = 1 in the Dirichlet prior p[A|v] on the
transition matrix A. Recall that the larger we make this probability, the more
confidence we have in prior belief. With this prior, the algorithm reconstructs the
whole pathway correctly (Fig. 1.5).
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Often prior epistasis information or pathway composition information may not
suffice to resolve all ordering ambiguity in the pathway. In such cases it would be
useful to predict the crucial pieces of information necessary to resolve remaining am-
biguity. We next show how our method can be applied to perform such a prediction
for the Nuclear Factor κB (NFκB) pathway.

1.3.3 NFκB Pathway

NFκB proteins function as dimeric transcription factors that control genes regu-
lating a broad range of biological processes including innate and adaptive immu-
nity, inflammation, apoptosis, stress responses, B cell development and lymphoid



De Novo Signaling Pathway Reconstruction From Multiple Data Sources 15

, (HPK, MEKK, MKK), 


, (EKK, HPK, MKK),  


, (RAC, RAS, MEKK, MKK), 


, (


GF


GF


GF


GF


GF


RAS, CDC42, RAC, MKK, MEKK), 


, (RAS, RAC), 


, (RAC, MEKK


JNK


JNK


JNK


JNK


, MKK, CDC42), 


, 


CS


(MEKK


1


CS


RHO


JNK


2
 , MKK


SAPK/JNK Pathway


, RAC), 


, (GCKs, MKK, MEKK), 


, (ASK1, MEKK


JNK


, M


J


K


FA


K)


NK


,


SL


OS
  
JNK


Figure 1.4: The (unordered) SAPK/JNK signaling pathway. Membrane receptors are in
red (left), and transcription factors are in blue (right). Activation or inhibition information
between pathway components are omitted. “GF” stands for Growth Factor, “CS” stands
for Cellular Stress, “FASL stands for Fas Ligand”, “OS” stands for Oxidation Stress. The
pathway is adapted from http://www.cellsignal.com/.

organogenesis [16]. NFκB pathways mediate the signal transduction from extracel-
lular stimuli to these transcription factors including controlled cytoplasmic-nuclear
shuttling and modulation of transcriptional activity [17].

We specified the terminal components of different stimuli receptors (start) and
NFκB (end), and pathway components corresponding to each stimuli (Fig. 1.6).
The latter can often be derived from a combination of computational approaches
(e.g. clustering) and the biologist’s expert knowledge. Biological expert knowl-
edge is acquired gradually over years from multiple sources such as the literature,
science seminars, and experimental results. We also incorporated several pieces of
prior biological information including the epistasis relationships between PI(3)K and
PLCγ2 [18], between PLCγ2 and PKC [18], between PKC and MALT1 [19], between
MALT1 and TRAF6 (TNF-receptor-associated factor 6) [20], between TRAF6 and
TAK1 (TGFβ-activated kinase 1) [21], between TAK1 and IKK [20], between PI(3)K
and Akt/Cot complex [22], and between JNK and βTrCP (β Transducin Repeat-
Containing Protein) [23]. The biology background is as follows: Upon PI(3)K ac-
tivation the Akt/Cot complex is likely recruited to the membrane through the Akt
PH domain, which binds the phospholipid PIP3 [22]. JNK induces βTrCP to ac-
tivate NFκB pathway [23]. Tyrosine phosphorylation of phospholipase PLCγ2 is
a crucial activation switch that initiates and maintains intracellular calcium mobi-
lization in response to extracellular stimuli [18]. PKC was reported to be able to
activate MALT1 upon receiving extracellular stimuli [19]. MALT1 binds and acti-
vates TRAF6 [20]. TRAF6 activates TAK1 through the adaptor protein TAB2 [21]
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and TAK1 activates IKK [20].

The NICO algorithm successfully reconstructs most of the pathway compo-
nent orders with the sole ambiguity being between NFκB complex1 and complex2
(Fig. 1.7). Indeed, in this case the ambiguity can be detected by investigating the
relative maxima of the likelihood function, P [X|Â, π̂]. A relative maximum that is
approximately equal to the global maximum indicates an ambiguity that is local-
ized by the positions of the relative maxima over the space of transition matrices
A (Eqs. 1.20, 1.21, Appendix. A). To resolve this ambiguity, our analysis indicates
that biologists should focus on investigating the epistatic relationship between these
two complexes.

1.3.4 Assembling Signaling Pathways into Signaling Networks

Biological signaling pathways tend to share a fair amount of common signal com-
ponents, and we often define these as signaling networks. The latter provides a
more complete view of cellular regulatory mechanisms. Fig. 1.8 presents a signaling
network assembled from SNK/JNK and NFκB pathways.

1.4 Discussion

In this chapter, we present a model based approach to inferring the order of an
unordered list of pathway components along with terminal genes. Compared to pre-
vious genetic and computational approaches, our approach does not directly depend
on the numeric format of the data, thus it enjoys the features of versatility, flexi-
bility and a high level of data abstraction. The knowledge of intermediate pathway
components and terminal components can be derived either from numeric data us-
ing computational/statistical methods or from meta-data using biological expertise,
e.g., terminal genes of a pathway are often specified as membrane receptor (start)
and transcription factor (end). In this sense, the approach represents progress in
data integration for gene pathway discovery. Moreover, the MAP variation permits
seamless incorporation of prior epistatic knowledge in the form of a prior on the
transition matrix. When ambiguities do exist our algorithm can identify them and
provide information on the most fruitful set of future experiments to resolve the
ambiguities.

Many researchers have found the topology of networks of signaling pathways to
be scale-free and sparse. In such topologies a small number of nodes (hub nodes)
are highly connected while the remaining nodes are not. The hub nodes may form
interaction motifs (functional modules) that are often shared by multiple pathways.
Our pathway ordering approach may be used to exploit the scale-free property by
better defining these multiple pathways. One limitation of our approach shared by
previous approaches is that our method assumes a linear pathway model without
any feedback loops. Many signaling pathways have been found to be interconnected
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and regulated via positive/negative feedback loops. Examples are the p53 signal-
ing pathways that correspond to a variety of intrinsic and extrinsic stress signals
that impacts upon cellular homeostatic mechanisms [24]. These pathways consist of
multiple positive/negative feedback loops, e.g. between p53 and MDM2. The lin-
ear pathway model assumption may result in suboptimal pathway reconstruction.
In future work, this limitation will be overcome by integrating more sophisticated
network models into the methodology.

Appendix A

Here we present two equally likely probability transition matrices for NFκB pathway
as described in section 1.3.3. The ordered row names are: “Ag”, “PI3K”, “PLCγ2”,
“PKC”, “MALT1”, “TRAF6”, “TAK1.TAB”, “IKK”, “NFκBC1”, “NFκBC2”, “NFκB”,
“Ag.MHC”, “IL1”, “dsRNA”, “PKR”, “TNF”, “MEKK”, “GF”, “Art.Cot”, “LT”,
“NIK”, “UV”, “JNK”, “bTrCP”. Notice that the 11th rows of both matrices are
all-zero corresponding to the end-of-pathway component “NFκB”.
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Figure 1.5: Upper panel: The correct SAPK/JNK signaling network topology defined by
the probability transition matrix Eq. 1.20 estimated from unordered pathway composition
data (Fig. 1.4) improved by incorporating a prior information on gene-gene interactions,
in particular the interactions between the two double-circled components. Lower panel:
The incorrect SAPK/JNK signaling network topology defined by the probability transition
matrix Eq. 1.21 estimated from unordered pathway composition data without incorporating
prior information.
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Figure 1.6: The (unordered) NFκB signaling pathways. Membrane receptors are in red
(left), and transcription factors are in blue (right). Activation or inhibition information
between pathway components are omitted. “Ag” stands for Antigen, “Ag-MHC” stands
for Major Histocompatibility Complex (MHC) Antigen, “IL-1” stands for Interleukemia-
1, “dsRNA” stands for double stranded RNA, TNF stands for Tumor Necrosis Factor,
“GF” stands for Growth Factor, “LT” stands for heat-labile enterotoxin. “NFκBC1”
and “NFκBC2” stand for NFκB complexes 1 and 2. The pathway is adapted from
http://www.cellsignal.com/.
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circled components are disambiguated from prior information. The epistasis relationship
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