Wireless Networking: An Introduction

Hongwei Zhang

http://www.cs.wayne.edu/~hzhang
Outline

- Networking as resource allocation
- A taxonomy of current practice
- Technical elements
Outline

- Networking as resource allocation
- A taxonomy of current practice
- Technical elements
Networking as resource allocation

sources and/or sinks
distributed applications

Information Services

Resource Allocation
Algorithms

Shared Radio Spectrum
(a portion of the RF spectrum)

Resource Allocation
Algorithms

Wireline Bit Carrier
Infrastructure
Outline

- Networking as resource allocation
- A taxonomy of current practice
- Technical elements
A taxonomy of current practice in wireless networking

- Fixed networks
 - Mobile access networks
 - Circuit multiplexing (e.g., GSM cellular networks)
 - Centralized statistical multiplexing (e.g., CDMA cellular networks; IS 95, cdma2000, WCDMA; and IEEE 802.16 "WIMAX" networks)
 - Distributed statistical multiplexing (e.g., IEEE 802.11 WLANs)
- Ad hoc networks (wireless mesh networks)
- Sensor networks
Current practice

- Mobile access networks
 - Cellular
 - 2G, 2.5G/2.75G, 3G, 4G
 - WiMAX
 - WLAN

- Ad hoc networks
 - Mesh internet
 - Sensor network
Cellular: 2G

- **FDM-TDMA**
 - **FDM**
 - Divide spectrum into a contiguous up-link band and a contiguous down-link band, and each of these bands is further divided (statically or dynamically) into reuse subbands;
 - each cell is allocated a pair of such subbands for up-link and down-link.
 - Each subband is further partitioned into channels
 - **TDM**
 - Each channel is digitally modulated and slotted to carry up to a fixed number of calls, in a TDM fashion

- Used in GSM, which was first introduced in Europe
CDMA

- Entire available spectrum is reused in every cell
- Each user is allocated a *pseudorandom sequence* (also called *spreading code*) to spread his/her signal
- Performance is *interference limited*, thus requiring careful transmission power control and call admission control
 - These functions are mostly implemented by the base station controllers (BSCs)
- First invented by Qualcomm
Cellular: 2.5G/2.75G

- **2.5G**: GSM-GPRS (General Packet Radio Service)
 - Goal: to provide packetized data access
 - In 2G, flexibility is limited to assigning multiple channels to each user for data delivery, where each channel enables certain low bit rate data transmission
 - In GPRS, combining multiple TDM slots on an FDM channel/carrier enables shared packet switched access to mobile users

- **2.75G**: EDGE (Enhanced Data rates for GSM Evolution)
 - in addition to combining TDM slots, higher order modulation schemes, with adaptive modulation, are utilized to enable speeds up to 474 Kbps
Cellular: 3G

- Based on CDMA technology
- Both voice and data are carried in packet mode
- Amount of spreading, user bit rate, transmission power can be adapted on a packet-by-packet basis
- Most widely adopted standard for 3G systems is WCDMA (wideband CDMA), which originated from Europe but now supported by 3G Partnership Project (3GPP) --- a consortium supported by US, Europe, China, Japan, & Korea
 - A competing standard is CDMA2000 proposed by Qualcomm
Cellular: 4G

- **Goals**
 - 100Mbps for mobiles and 1Gbps for static nodes
 - All IP, packet switched network (supporting IPv6)
 - Seamless handoff across heterogeneous networks such as 3G, WiMAX, and WLAN

- **Key technologies**
 - OFDM, MIMO, Turbo principle (to allow reliable operation in low SNR regime)
 - Adaptive radio interface, e.g., software-defined radio (SDR)
 - Relaying, including fixed relaying networks (FRN) and network MIMO (or cooperative relaying)
Standardization

- 3GPP is currently standardizing “LTE (long term evolution) Advanced” as future 4G standard
- A first set of 3GPP requirements on LTE Advanced has been approved in June 2008
WiMAX

- High speed Internet access (? e.g., >100Mbps down-link)

- Physical layer: MIMO, OFDMA

- Access control
 - Time is divided into frames; each frame is partitioned into an up-link and a down-link part, which is called *time division duplexing* (TDD)
 - Base station (BS) allocates time on various subchannels to various down-link flows in the down-link part of the frame, and based on subscriber station (SS) requests, in the up-link part of the frame

- Standardization: IEEE 802.16/802.16e/802.16m
WLAN: statistical TDMA

- **802.11 (1997)**
 - 2.4-2.485 GHz unlicensed radio spectrum
 - 1Mbps or 2Mbps
 - Physical layer coding: Frequency Hopping Spread Spectrum (FHSS) or Direct Sequence Spread Spectrum (DSSS)

- **802.11b (1999)**
 - 2.4-2.485 GHz unlicensed radio spectrum
 - up to 11 Mbps: 1, 2, 5.5, 11M depending on coding scheme
 - DSSS only (at physical layer)
 - *all hosts use same chipping code*
 - widely deployed, using base stations; ad hoc mode/mesh network at research/prototype stage
- **802.11a (1999)**
 - 5-6 GHz range
 - up to 54 Mbps
 - Orthogonal Frequency Division Multiplexing (OFDM)

- **802.11g (2003)**
 - 2.4-2.485 GHz range
 - up to 54 Mbps
 - OFDM
- **802.11n (2009)**
 - Multi-input multi-output (MIMO) at physical layer
 - 2.4 GHz or 5 GHz
 - Up to 549 Mbps; ~50 meters

- **Related: 802.11p**
 - Draft amendment to 802.11 to support ITS (Intelligent Transportation Systems) applications: DSRC (Dedicated Short Range Communication) for vehicle-to-vehicle and vehicle-to-roadside communication
 - Run in the *licensed* ITS band of 5.9 GHz (5.85-5.925 GHz)
Ad-Hoc networks

- Wireless internet mesh
 - 802.11s

- Sensor network
 - 802.15.4 for MAC
 - ZigBee for whole stack
Outline

- Networking as resource allocation
- A taxonomy of current practice
- Technical elements
Technical elements

- Transport of users’ bits over shared radio spectrum
 - Modulation parameter adaptation: tx. power, amount of error protection, etc
 - Adaptive modulation
- Neighbor discovery, association and topology formation, routing
- Transmission scheduling
- Others:
 - Location determination: via GPS or GPS-free approaches
 - Distributed computation, including in-network processing
Summary

- Networking as resource allocation
- A taxonomy of current practice
- Technical elements