Network Design: Problem Modeling

Hongwei Zhang

http://www.cs.wayne.edu/~hzhang

Acknowledgment: the slides are based on those from Drs. Yong Liu, Deep Medhi, and Michał Pióro.
Outline

- Basic Design Problems
- Routing Restriction
- Dimensioning for Modular Link Capacity
- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
Outline

- Basic Design Problems
- Routing Restriction
- Dimensioning for Modular Link Capacity
- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
NDP Modeling

- Design for normal (nominal) operating state
 - average demand volumes, no variation
 - resource fully available, no failure.

- Two time scales
 - Uncapacitated design
 - for a given demand, *how much resource needed and how to distribute*
 - medium/long term planning
 - Capacitated design
 - given demand, resource, how to *allocate flows to paths* to optimize a network goal
 - short/medium term design
Dimensioning/Simple Design Problem (D/SDP): Link-Path Formulation

Simple Design Problem

- indices
 \[d = 1, 2, \ldots, D \] demands
 \[p = 1, 2, \ldots, P_d \] candidate paths for flows realizing demand \(d \)
 \[e = 1, 2, \ldots, E \] links

- constants
 \[\delta_{epd} \] = 1, if link \(e \) belongs to path \(p \) realizing demand \(d \); 0, otherwise
 \[h_d \] volume of demand \(d \)
 \[\xi_e \] unit (marginal) cost of link \(e \)

- variables
 \[x_{dp} \] flow allocated to path \(p \) of demand \(d \) (continuous non-negative)
 \[y_e \] capacity of link \(e \) (continuous non-negative)

- objective
 minimize \(F = \sum_{e} \xi_{e} y_{e} \) (bandwidth cost)

- constraints
 \[\sum_{p} x_{dp} = h_{d}, \quad d = 1, 2, \ldots, D \] (demand constraints)
 \[\sum_{d} \sum_{p} \delta_{epd} x_{dp} \leq y_{e}, \quad e = 1, 2, \ldots, E \] (capacity constraints).

Shortest path allocation rule: allocate all volume to cheapest path.
Dimensioning/Simple Design Problem: Node-Link Formulation I: link flow

• constants

- \(a_{ev}\) = 1 if link \(e\) originates at node \(v\), 0 otherwise
- \(b_{ev}\) = 1 if link \(e\) terminates in node \(v\), 0 otherwise
- \(s_d\) source node of demand \(d\)
- \(t_d\) sink node of demand \(d\)
- \(h_d\) volume of demand \(d\)
- \(\xi_e\) unit cost of link \(e\)

• variables

- \(x_{ed}\) flow realizing demand \(d\) allocated to link \(e\) (continuous non-negative)
- \(y_e\) capacity of link \(e\) (continuous non-negative)

• objective

minimize \(F = \sum_e \xi_e y_e\)

• constraints

\[\sum_e a_{ev} x_{ed} - \sum_e b_{ev} x_{ed} = \begin{cases} h_d, & \text{if } v = s_d \\ 0, & \text{if } v \neq s_d, t_d, \quad v = 1, 2, \ldots, V; d = 1, 2, \ldots, D \\ -h_d, & \text{if } v = t_d \end{cases}\]

\[\sum_d x_{ed} \leq y_e, \quad e = 1, 2, \ldots, E.\]
Dimensioning/Simple Design Problem: Node-Link Formulation II: node flow (fewer flow variables than link flow)

- **constants**
 - \(a_{ev} \): 1 if link \(e \) originates at node \(v \), 0 otherwise
 - \(b_{ev} \): 1 if link \(e \) terminates in node \(v \), 0 otherwise
 - \(h_{vv'} \): volume of demand \(d \) originating at node \(v \) and terminating at node \(v' \)
 - \(H_v \): \(\sum_{v' \neq v} h_{vv'} \) - total demand volume originating in node \(v \)
 - \(\xi_e \): unit cost of link \(e \)

- **variables**
 - \(x_{ev} \): flow realizing all demands originating at node \(v \) on link \(e \)
 - \(y_e \): capacity of link \(e \)

- **objective**
 - minimize \(F = \sum_e \xi_e y_e \)

- **constraints**
 - \(\sum_e a_{ev} x_{ev} = H_v, \quad v = 1, 2, ..., V \) (focus on \(v \))
 - \(\sum_e b_{ev} x_{ev} - \sum_e a_{ev'} x_{ev} = h_{vv'}, \quad v, v' = 1, 2, ..., V, \quad v \neq v' \) (focus on \(v' \))
 - \(\sum_v x_{ev} \leq y_e, \quad e = 1, 2, ..., E \).
Model Comparison

- Complexity

 - Table 4.1 Model Comparison

<table>
<thead>
<tr>
<th></th>
<th>Number of Variables</th>
<th>Number of Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link-path formulation</td>
<td>$P \times V'(V' - 1) + \frac{1}{2} k \times V = O(V^2)$</td>
<td>$P \times V'(V' - 1) + \frac{1}{2} k \times V = O(V^2)$</td>
</tr>
<tr>
<td>Node-link formulation</td>
<td>$\frac{1}{2} k \times V \times V'(V' - 1) = O(V^3)$</td>
<td>$V \times V'(V' - 1) + \frac{1}{2} k \times V = O(V^2)$</td>
</tr>
<tr>
<td>Modified node-link</td>
<td>$\frac{1}{2} k \times V \times (V' + 1) = O(V^2)$</td>
<td>$V'(V + 1) + \frac{1}{2} k \times V = O(V^2)$</td>
</tr>
</tbody>
</table>

- Flexibility

 - Link-path formulation (PF): pre-compute path
 - Node-link formulation (LF): implicitly all possible paths
 - Path eliminating
 - PF: exclude in path pre-processing, set path flow to zero
 - LF: manipulate link flow to control path flow, e.g., prevent certain link flow

![Network with Separate End and Transit Nodes](image)
Capacitated Problem

 Allocation problem (A): given link capacities, whether demands are realizable?

Pure Allocation Problem

- **indices**
 - \(d = 1, 2, ..., D \) demands
 - \(p = 1, 2, ..., P_d \) candidate paths for flows realizing demand \(d \)
 - \(e = 1, 2, ..., E \) links

- **constants**
 - \(\delta_{edp} \) = 1 if link \(e \) belongs to path \(p \) realizing demand \(d \); = 0 otherwise
 - \(h_d \) volume of demand \(d \)
 - \(c_e \) capacity of link \(e \)

- **variables**
 - \(x_{dp} \) flow allocated to path \(p \) of demand \(d \) (continuous non-negative)

- **constraints**
 - \(\sum_p x_{dp} = h_d, \quad d = 1, 2, ..., D \)
 - \(\sum_d \sum_p \delta_{edp} x_{dp} \leq c_e, \quad e = 1, 2, ..., E. \)
Modified Link-Path Formulation

- how much additional bandwidth needed on each link to accommodate current demand?

PAP – Modified Link-Path Formulation

- **indices**

 \[d = 1, 2, \ldots, D \] \hspace{1cm} \text{demands}

 \[p = 1, 2, \ldots, P_d \] \hspace{1cm} \text{candidate paths for flows realizing demand } d

 \[e = 1, 2, \ldots, E \] \hspace{1cm} \text{links}

- **constants**

 \[\delta_{edp} = 1 \text{ if link } e \text{ belongs to path } p \text{ realizing demand } d; = 0 \text{ otherwise} \]

 \[h_d \] \hspace{1cm} \text{volume of demand } d

 \[c_e \] \hspace{1cm} \text{capacity of link } e

- **variables**

 \[x_{dp} \] \hspace{1cm} \text{flow allocated to path } p \text{ of demand } d

 \[z \] \hspace{1cm} \text{auxiliary continuous variable (of unrestricted sign)}

- **objective**

 minimize \(z \)

- **constraints**

 \[\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \]

 \[\sum_d \sum_p \delta_{edp} x_{dp} \leq z + c_e, \]
How many paths needed?

- Proposition: If there is a feasible allocation, then there exists an allocation with at most \(D+E\) non-zero flows
 - \(D\) flows if all links are unsaturated

- Assign the entire demand volume of each demand to one of its shortest paths (\#hops); if all links are saturated and at least one is overloaded in the resulting solution, then there is no feasible allocation. (exercise)
Proposition 4.1: If the problem is feasible, then \textit{at most} $D+E$ flow variables are required to be nonzero at optimality.

- See book for proof (Page 113)
- Basic idea:
 - use “auxiliary, slack variable” to transform the link capacity constraint in “inequality” form to “equality form”;
 - # of non-zero (basic) variables in any basic feasible solution is at most equal to the number of equations.

Illustration: $N=50$, $E=200$ example

- Here $D = \frac{1225}{2} = \frac{N(N-1)}{2}$
- $D+E = 1425$
- Each pair must have one positive path flow
 - => remains 200 to be positive, thus only about 200 demand pairs would have more than one positive path flow at optimality
Mixed Capacitated/Uncapacitated Problem

- with *upper bounds* on link capacities

Bounded Link Capacities

- **indices**
 - $d = 1, 2, \ldots, D$ demands
 - $p = 1, 2, \ldots, P_d$ candidate paths for flows realizing demand d
 - $e = 1, 2, \ldots, E$ links

- **constants**
 - $\delta_{e dp} = 1$ if link e belongs to path p realizing demand d; 0, otherwise
 - h_d volume of demand d
 - c_e upper bound on the capacity of link
 - ξ_e unit cost of link e

- **variables**
 - x_{dp} flow allocated to path p of demand (continuous non-negative) d
 - y_e capacity of link e (continuous non-negative)

- **objective**
 - minimize $F = \sum_e \xi_e y_e$

- **constraints**
 - $\sum_p x_{dp} = h_d$, $d = 1, 2, \ldots, D$
 - $\sum_d \sum_p \delta_{e dp} x_{dp} \leq y_e$, $e = 1, 2, \ldots, E$
 - $y_e \leq c_e$, $e = 1, 2, \ldots, E$.
Outline

- Basic Design Problems
- Routing Restriction
- Dimensioning for Modular Link Capacity
- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
Introducing Routing Restriction

- enforce the resulting routes w./w.o. certain properties
 - path diversity vs. limited split
 - equal splitting vs. arbitrary splitting
 - modular flows vs. unmodular/real flows

- extend the basic formulation by introducing additional routing constraints
Path Diversity

“never put all eggs in one basket” (?)

Generalized Diversity

• indices
 \[d = 1, 2, \ldots, D \] demands
 \[p = 1, 2, \ldots, P_d \] candidate paths for flows realizing demand \(d \)
 \[e = 1, 2, \ldots, E \] links

• constants
 \[\delta_{edp} \] = 1 if link \(e \) belongs to path \(p \) realizing demand \(d \); 0, otherwise
 \[h_d \] volume of demand \(d \)
 \[n_d \] diversity factor for demand \(d \)
 \[c_e \] capacity of link \(e \)

• variables
 \[x_{dp} \] flow allocated to path \(p \) of demand \(d \)

• constraints
 \[\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \]
 \[\sum_d \sum_p \delta_{edp} x_{dp} \leq c_e, \quad e = 1, 2, \ldots, E \]
 \[\sum_p \delta_{edp} x_{dp} \leq h_d / n_d, \quad e = 1, 2, \ldots, E \quad d = 1, 2, \ldots, D. \]
Lower Bounds on Non-Zero Flows

- the flow volume on a path, if any, should be lower bounded (?)
 - implicitly limit number of paths

Lower-Bounded Flows

- **indices**
 - \(d = 1, 2, ..., D \) demands
 - \(p = 1, 2, ..., P_d \) candidate paths for flows realizing demand \(d \)
 - \(e = 1, 2, ..., E \) links

- **constants**
 - \(\delta_{edp} \) = 1 if link \(e \) belongs to path \(p \) realizing demand \(d \); 0, otherwise
 - \(h_d \) volume of demand \(d \)
 - \(b_d \) lower bound on non-zero flows of demand \(d \)
 - \(c_e \) capacity of link \(e \)

- **variables**
 - \(x_{dp} \) continuous flow variable allocated to path \(p \) of demand \(d \)
 - \(u_{dp} \) binary variable corresponding to \(x_{dp} \)

- **constraints**
 - \(\sum_p x_{dp} = h_d; \quad d = 1, 2, ..., D \)
 - \(x_{dp} \leq h_d u_{dp}; \quad d = 1, 2, ..., D \quad p = 1, 2, ..., P_d \)
 - \(b_d u_{dp} \leq x_{dp}; \quad d = 1, 2, ..., D \quad p = 1, 2, ..., P_d \)
 - \(\sum_d \sum_p \delta_{edp} x_{dp} \leq c_e; \quad e = 1, 2, ..., E \).
Limited Demand Split

- only split among k paths; $k=1 \Rightarrow \text{single path allocation (?)}$

Single-Path Allocation

- **indices**
 - $d = 1, 2, \ldots, D$ demands
 - $p = 1, 2, \ldots, P_d$ candidate paths for flows realizing demand d
 - $e = 1, 2, \ldots, E$ links

- **constants**
 - $\delta_{edp} = 1$ if link e belongs to path p realizing demand d; 0, otherwise
 - h_d volume of demand d
 - c_e capacity of link e

- **variables**
 - x_{dp} flow allocated to path p of demand d
 - u_{dp} binary variable associated with flow x_{dp}

- **constraints**
 - $x_{dp} = h_d u_{dp}, \quad d = 1, 2, \ldots, D \quad p = 1, \ldots, P_d$
 - $\sum_p u_{dp} = 1, \quad d = 1, 2, \ldots, D$
 - $\sum_d \sum_p \delta_{edp} x_{dp} \leq c_e, \quad e = 1, 2, \ldots, E.$

- The above “single path allocation” problem is NP-complete
 - Reduction from “integral flow problem w/ homogeneous unit demands”, which in turn is proved by reduction from “two demand, integral flow problem”
Node-Link Formulation

- **Single Path allocation**

- **constants**
 - \(a_{ev}\) = 1 if node \(v\) is the originating node of link \(e\); 0, otherwise
 - \(b_{ev}\) = 1 if node \(v\) is the terminating node of link \(e\); 0, otherwise
 - \(s_d\) source node of demand \(d\)
 - \(t_d\) sink node of demand \(d\)
 - \(h_d\) volume of demand \(d\)
 - \(c_e\) capacity of link \(e\)

- **variables**
 - \(u_{de}\) binary variable corresponding to flow of demand \(d\) allocated to link \(e\)

- **constraints**

 \[
 \sum_d h_d u_{de} \leq c_e, \quad e = 1, 2, \ldots, E
 \]
 \[
 \sum_e a_{ev} u_{de} - \sum_e b_{ev} u_{de} = \begin{cases}
 1, & \text{if } v = s_d \\
 0, & \text{if } v \neq s_d, t_d, \\
 -1, & \text{if } v = t_d.
 \end{cases} \quad v = 1, 2, \ldots, V; d = 1, 2, \ldots, D
 \]
Node-Link Formulation

- equally split among \(k \) link-disjoint paths

Equal Split Among \(k \) Link-Disjoint Paths

- **indices**

 \[
 \begin{align*}
 d &= 1, 2, \ldots, D & \text{demands} \\
 e &= 1, 2, \ldots, E & \text{links} \\
 v &= 1, 2, \ldots, V & \text{nodes}
 \end{align*}
 \]

- **constants**

 \[
 \begin{align*}
 a_{ev} &= 1 \text{ if node } v \text{ is the originating node of link } e; 0, \text{ otherwise} \\
 b_{ev} &= 1 \text{ if node } v \text{ is the terminating node of link } e; 0, \text{ otherwise} \\
 s_d &= \text{source node of demand } d \\
 t_d &= \text{sink node of demand } d \\
 h_d &= \text{volume of demand } d \\
 c_e &= \text{capacity of link } e \\
 k_d &= \text{predetermined number of paths for demand } d
 \end{align*}
 \]

- **variables**

 \[
 u_{de} = \text{binary variable corresponding to flow of demand } d \text{ allocated to link } e
 \]

- **constraints**

 \[
 \begin{align*}
 \sum_d u_{de} h_d / k_d & \leq c_e, & e = 1, 2, \ldots, E \\
 \sum_e a_{ev} u_{de} - \sum_e b_{ev} u_{de} & = \begin{cases}
 k_d, & \text{if } v = s_d \\
 0, & \text{if } v \neq s_d, t_d \\
 -k_d, & \text{if } v = t_d.
 \end{cases} & v = 1, 2, \ldots, V; d = 1, 2, \ldots, D
 \end{align*}
 \]
Outline

- Basic Design Problems
- Routing Restriction
- Dimensioning for Modular Link Capacity
- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
Integral Flows

- allocate demand volumes in demand modules

Modular Flow Allocation

- **indices**
 - \(d = 1, 2, ..., D \) demands
 - \(p = 1, 2, ..., P_d \) candidate paths for flows realizing demand \(d \)
 - \(e = 1, 2, ..., E \) links

- **constants**
 - \(\delta_{edp} \) = 1 if link \(e \) belongs to path \(p \) realizing demand \(d \); 0 otherwise
 - \(L_d \) demand module for demand \(d \)
 - \(H_d \) volume of demand \(d \) expressed as the number of demand modules
 - \(h_d \) demand volume \((h_d = L_d H_d) \)
 - \(c_e \) capacity of link \(e \)

- **variables**
 - \(u_{dp} \) non-negative integral variable associated with the flow on path \(p \) of demand \(d \)

- **constraints**
 - \(\sum_p u_{dp} = H_d, \quad d = 1, 2, ..., D \)
 - \(\sum_d L_d \sum_p \delta_{edp} u_{dp} \leq c_e, \quad e = 1, 2, ..., E. \)
Outline

- Basic Design Problems
- Routing Restriction
- Dimensioning for Modular Link Capacity
- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
Nonlinear Link Cost

- **Linear Link Cost**
 - link capacity = link rate
 - linear cost: $/bps

- **Nonlinear Link Cost**
 - modular link capacities
 - different link modules

Figure 4.2 Cost of a Modular Link Versus Link Load

Figure 4.3 Cost of a Link with Multiple Modules
Dimensioning with Modular Links

Modular Links

- **indices**
 - \(d = 1, 2, \ldots, D \) demands
 - \(p = 1, 2, \ldots, P_d \) candidate paths for flow realizing demand \(d \)
 - \(e = 1, 2, \ldots, E \) links

- **constants**
 - \(\delta_{edp} \) = 1, if link \(e \) belongs to path \(p \) realizing demand \(d \), 0 otherwise
 - \(h_d \) volume of demand \(d \)
 - \(\xi_e \) cost of one capacity module on link \(e \)
 - \(M \) size of the link capacity module

- **variables**
 - \(x_{dp} \) flow allocated to path \(p \) of demand \(d \) (continuous non-negative)
 - \(y_e \) capacity of link \(e \) expressed in the number of modules (non-negative integer)

- **objective**
 - minimize \(F = \sum_e \xi_e y_e \)

- **constraints**
 - \(\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \)
 - \(\sum_d \sum_p \delta_{edp} x_{dp} \leq M y_e, \quad e = 1, 2, \ldots, E. \)

NP-complete
Dimensioning with Multiple Modules (?)

Link With Multiple Modular Sizes

- **indices**
 - \(d = 1, 2, \ldots, D \) demands
 - \(p = 1, 2, \ldots, P_d \) candidate paths for flow realizing demand \(d \)
 - \(e = 1, 2, \ldots, E \) links
 - \(k = 1, 2, \ldots, K \) types of modules

- **constants**
 - \(\delta_{edp} \) = 1, if link \(e \) belongs to path \(p \) realizing demand \(d \), 0 otherwise
 - \(h_d \) volume of demand \(d \)
 - \(\xi_{ek} \) cost of one capacity module of type \(k \) on link \(e \)
 - \(M_k \) size of the link capacity module of type \(k \)

- **variables**
 - \(x_{dp} \) flow allocated to path \(p \) of demand \(d \)
 - \(y_{ek} \) number of modules of type \(k \) on link \(e \) (non-negative integer)

- **objective**
 - minimize \(F = \sum_e \sum_k \xi_{ek} y_{ek} \)

- **constraints**
 - \(\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \)
 - \(\sum_d \sum_p \delta_{edp} x_{dp} \leq \sum_k M_k y_{ek}, \quad e = 1, 2, \ldots, E. \)

NP-complete?
Convex Cost Functions

- Convex Function
 - \((1 - \alpha)f(x) + \alpha f(y) \geq f((1 - \alpha)x + \alpha y), \forall \alpha \in [0, 1]\)
 - \(f(y) \geq f(x) + \nabla f(x)(y - x)\)
 - non-negative second order derivative
 - local minimum \(\Rightarrow\) global minimum

- good approx. for link delay
 - \(F_e(y_e) = \frac{1}{c_e - y_e}, \quad 0 \leq y_e < c_e\)

- split demand if possible
 - Because \(f(z_1)/z_1 \leq f(z_2)/z_2\) for \(z_1 < z_2\)

- how to split?
Minimal Delay Routing

- link delay, network delay, avg. user delay

Convex Cost Function

- **indices**

 \[\begin{align*}
 d &= 1, 2, \ldots, D \quad \text{demands} \\
 p &= 1, 2, \ldots, P_d \quad \text{candidate paths for flows realizing demand } d \\
 e &= 1, 2, \ldots, E \quad \text{links}
 \end{align*} \]

- **constants**

 \[\begin{align*}
 \delta_{epd} &= 1 \text{ if link } e \text{ belongs to path } p \text{ realizing demand } d; 0, \text{ otherwise} \\
 h_d &= \text{volume of demand } d \\
 F_e(\cdot) &= \text{convex cost function of link } e \\
 c_e &= \text{capacity of link } e
 \end{align*} \]

- **variables**

 \[\begin{align*}
 x_{dp} &= \text{flow allocated to path } p \text{ of demand } d \text{ (continuous non-negative)} \\
 y_e &= \text{load of link } e \text{ (continuous non-negative)}
 \end{align*} \]

- **objective**

 minimize \(F = \sum_e F_e(y_e) \)

- **constraints**

 \[\begin{align*}
 \sum_p x_{dp} &= h_d, \quad d = 1, 2, \ldots, D \\
 \sum_d \sum_p \delta_{epd} x_{dp} &= y_e, \quad e = 1, 2, \ldots, E \\
 y_e &\leq c_e, \quad e = 1, 2, \ldots, E.
 \end{align*} \]
Piecewise Linear Approximation of Convex Function

\[f(z) = \begin{cases}
0 & 0 \leq z \leq 1 \\
(z - 1)^2 & z > 1.
\end{cases} \]

\[\hat{f}(z) = \begin{cases}
0 & 0 \leq z \leq 1 \\
z - 1 & 1 \leq z < 2 \\
3(z - 2) + 1 = 3z - 5 & 2 \leq z < 3 \\
10(z - 3) + 4 = 10z - 26 & z \geq 3.
\end{cases} \]
Piecewise Linear Approximation of Convex Function

\[f(y) = \max_{k=1,2,\ldots,K} a_k y + b_k \]

\[f(y) = \begin{cases}
\text{minimize} & r \\
\text{subject to} & r \geq a_k y + b_k, \quad k = 1, 2, \ldots, K.
\end{cases} \]
Convex Penalty Function – Piecewise Linear Approximation

- **indices**
 - \(d = 1, 2, \ldots, D \) demands
 - \(p = 1, 2, \ldots, P_d \) candidate paths for flows realizing demand \(d \)
 - \(e = 1, 2, \ldots, E \) links
 - \(k = 1, 2, \ldots, K_e \) consecutive pieces of the linear approximation of \(F_e(\cdot) \)

- **constants**
 - \(\delta_{edp} \) = 1 if link \(e \) belongs to path \(p \) realizing demand \(d \); 0, otherwise
 - \(h_d \) volume of demand \(d \)
 - \(c_e \) capacity of link \(e \)
 - \(F_e(\cdot) \) convex penalty function of link \(e \)
 - \(a_{ek}, b_{ek} \) coefficients of the linear pieces of the piecewise linear approximation of \(F_e(\cdot) \)

- **variables**
 - \(x_{dp} \) flow allocated to path \(p \) of demand \(d \)
 - \(y_e \) load of link \(e \)
 - \(r_e \) continuous variable approximating \(F_e(y_e) \)

- **objective**
 - minimize \(F = \sum_e r_e \)

- **constraints**
 - \(\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \)
 - \(\sum_d \sum_p \delta_{edp} x_{dp} = y_e, \quad e = 1, 2, \ldots, E \)
 - \(r_e > a_{ek} y_e + b_{ek}, \quad e = 1, 2, \ldots, E \quad k = 1, 2, \ldots, K_e \)
Concave Link Dimensioning Functions

- **Concave Function**
 - \(\alpha f(z_1) + (1-\alpha) f(z_2) \leq f(\alpha z_1 + (1-\alpha) z_2), \forall \alpha \in [0, 1] \)
 - non-positive second derivative, unique maximum
 - Erlang B-Loss Formula (extend to real domain)
 \[
 b_e = B(A, y_e), \quad y_e = B^{-1}(A, b_e)
 \]

- **Implications**
 - merge resource if possible
 - Because \(f(z_1)/z_1 \geq f(z_2)/z_2 \) for \(z_1 < z_2 \)
Figure 4.7 Piecewise Linear Approximation of a Concave Function
Concave Link Dimensioning

Concave Dimensioning Functions

- **indices**

 \[d = 1, 2, \ldots, D \quad \text{demands} \]

 \[p = 1, 2, \ldots, P_d \quad \text{candidate paths for flows realizing demand } d \]

 \[e = 1, 2, \ldots, E \quad \text{links} \]

- **constants**

 \[\delta_{edp} = 1 \text{ if link } e \text{ belongs to path } p \text{ realizing demand } d; \ 0, \text{ otherwise} \]

 \[h_d \quad \text{volume of demand } d \]

 \[\xi_e \quad \text{unit cost of link } e \]

 \[F_e(\cdot) \quad \text{non-decreasing concave dimensioning function of link } e \]

- **variables**

 \[x_{dp} \quad \text{flow allocated to path } p \text{ of demand } d \]

 \[y_e \quad \text{load of link } e \]

- **objective**

 minimize \[F = \sum_e \xi_e F_e(y_e) \]

- **constraints**

 \[\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \]

 \[\sum_d \sum_p \delta_{edp} x_{dp} = y_e, \quad e = 1, 2, \ldots, E. \]
Outline

- Basic Design Problems
- Routing Restriction
- Dimensioning for Modular Link Capacity
- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
Budget Constraint

- given budget constraint B, maximize the realized ratio r for all demands.

- objective
 maximize r

- constraints
 \[\sum_p x_{dp} \geq r h_d, \quad d = 1, 2, ..., D \]
 \[\sum_d \sum_p \delta_{edp} x_{dp} \leq y_e, \quad e = 1, 2, ..., E \]
 \[\sum_e \xi_e y_e \leq B. \]
Outline

- Basic Design Problems
- Routing Restriction
- Dimensioning for Modular Link Capacity
- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
Incremental NDPs

- design from scratch v.s. improve existing network; sub-optimal solution

Simple Extension Problem

- indices

 \[d = 1, 2, \ldots, D \]
 demands

 \[p = 1, 2, \ldots, P_d \]
 candidate paths for flow realizing demand \(d \)

 \[e = 1, 2, \ldots, E \]
 links

- constants

 \(\delta_{edp} = 1, \) if link \(e \) belongs to path \(p \) realizing demand \(d \), \(0 \) otherwise

 \(h_d \)
 volume of demand \(d \)

 \(\xi_e \)
 unit cost of link \(e \)

 \(c_e \)
 existing capacity of link \(e \)

- variables

 \(x_{dp} \)
 flow variable allocated to path \(p \) of demand \(d \) (continuous non-negative)

 \(y_e \)
 extra capacity of link \(e \) on top of \(c_e \) (continuous non-negative)

- objective

 minimize \(F = \sum_e \xi_e y_e \)

- constraints

 \[\sum_p x_{dp} = h_d, \quad d = 1, 2, \ldots, D \]

 \[\sum_d \sum_p \delta_{edp} x_{dp} \leq y_e + c_e, \quad e = 1, 2, \ldots, E. \]
Outline

- Basic Design Problems
- Routing Restriction
- Dimensioning for Modular Link Capacity
- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
Extensions: nodes

- constraints on nodes
 - node cost: input/output ports, link termination, switching fabric, installation, ...
 - reliability: node disjoint

- virtual link (graph)
 - two copies for a node: receiving/sending
 - directed link from receiving copy to sending copy

- incorporating node constraints
 - node cost represented by link cost on its virtual link
 - node-disjoint in real graph <=> link-disjoint in virtual graph
Extensions: nodes (contd.)

- link-path formulation

\[\delta_{e(v)dp} = \begin{cases} 1, & \text{if node } v \text{ belongs to path } p \text{ realizing demand } d \\ 0, & \text{otherwise} \end{cases} \]

- load on a node: \[y_v = \sum_{d} \sum_{p} (\delta_{e(v)dp} x_{dp}) \]

- reliability against node failures: no node carries more than certain share for a demand
 - link-path formulation \[\sum_{p} (\delta_{e(v)dp} x_{dp}) \leq h_d/n_d, \quad v \neq s_d, v \neq t_d \]
 - node-link formulation \[x_{e(v)d} \leq h_d/n_d, \quad v \neq s_d, v \neq t_d \]
Summary

- Basic Design Problems
 - Uncapacitated & capacitated

- Routing Restriction

- Dimensioning for Modular Link Capacity

- Additional considerations
 - Nonlinear Link Dimensioning, Cost and Delay functions
 - Budget Constraint
 - Incremental NDP
 - Extensions
Exercise #1:
- Exercises 4.6, 4.7, 4.23

TinyExam #1