M/M/* Queues

Hongwei Zhang

http://www.cs.wayne.edu/~hzhang

Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis.
Outline

- M/M/1 Queue
- Poisson Arrivals See Time Averages (PASTA)
- M/M/* Queues
- Introduction to Sojourn Times
Outline

- M/M/1 Queue
- Poisson Arrivals See Time Averages (PASTA)
- M/M/* Queues
- Introduction to Sojourn Times
The M/M/1 Queue

- Arrival process: Poisson with rate λ
- Service times: iid, exponential with parameter μ
- Service times and interarrival times: independent
- Single server
- Infinite waiting room
- $N(t)$: Number of customers in system at time t (state)
Exponential Random Variables

- X: exponential RV with parameter λ
- Y: exponential RV with parameter μ
- X, Y: independent

Then:
1. $\min\{X, Y\}$: exponential RV with parameter $\lambda + \mu$
2. $P\{X < Y\} = \frac{\lambda}{\lambda + \mu}$

Proof:

\[
P\{\min\{X, Y\} > t\} = P\{X > t, Y > t\} = P\{X > t\} P\{Y > t\} = e^{-\lambda t} e^{-\mu t} = e^{-(\lambda + \mu) t} \Rightarrow
\]

\[
P\{\min\{X, Y\} \leq t\} = 1 - e^{-(\lambda + \mu) t}
\]

\[
P\{X < Y\} = \int_0^\infty \int_0^y f_{XY}(x, y) \, dx \, dy =
\]

\[
= \int_0^\infty \int_0^y \lambda e^{-\lambda x} \cdot \mu e^{-\mu y} \, dx \, dy =
\]

\[
= \int_0^\infty \mu e^{-\mu y} \int_0^y \lambda e^{-\lambda x} \, dx \, dy =
\]

\[
= \int_0^\infty \mu e^{-\mu y} (1 - e^{-\lambda y}) \, dy =
\]

\[
= \int_0^\infty \mu e^{-\mu y} dy - \frac{\mu}{\lambda + \mu} \int_0^\infty (\lambda + \mu) e^{-(\lambda + \mu) y} dy =
\]

\[
= 1 - \frac{\mu}{\lambda + \mu} = \frac{\lambda}{\lambda + \mu}
\]
M/M/1 Queue: Markov Chain Formulation

- Jumps of \(\{N(t): t \geq 0\} \) triggered by arrivals and departures
- \(\{N(t): t \geq 0\} \) can jump only between neighboring states

Assume process at time \(t \) is in state \(i: N(t) = i \geq 1 \)

- \(X_i: \) time until the next arrival – exponential with parameter \(\lambda \)
- \(Y_i: \) time until the next departure – exponential with parameter \(\mu \)
- \(T_i = \min\{X_i, Y_i\}: \) time process spends at state \(i \)

\(T_i: \) exponential with parameter \(\nu_i = \lambda + \mu \)

\(P_{i,i+1} = \mathbb{P}\{X_i < Y_i\} = \lambda / (\lambda + \mu), \quad P_{i,i-1} = \mathbb{P}\{Y_i < X_i\} = \mu / (\lambda + \mu) \)

\(P_{01} = 1, \) and \(T_0 \) is exponential with parameter \(\lambda \)

\(\{N(t): t \geq 0\} \) is a continuous-time Markov chain with

\[
q_{i,i+1} = \nu_i P_{i,i+1} = \lambda, \quad i \geq 0 \\
q_{i,i-1} = \nu_i P_{i,i-1} = \mu, \quad i \geq 1 \\
q_{ij} = 0, \quad |i - j| > 1
\]
M/M/1 Queue: Stationary Distribution?

- **Birth-death process → DBE**
 \[
 \mu p_n = \lambda p_{n-1} \Rightarrow \\
 p_n = \frac{\lambda}{\mu} p_{n-1} = \rho p_{n-1} = \cdots = \rho^n p_0
 \]

- **Normalization constant**
 \[
 \sum_{n=0}^{\infty} p_n = 1 \iff p_0 \left[1 + \sum_{n=1}^{\infty} \rho^n \right] = 1 \iff p_0 = 1 - \rho , \quad \text{if } \rho < 1
 \]

- **Stationary distribution**
 \[
 p_n = \rho^n (1 - \rho), \quad n = 0,1,\ldots
 \]
M/M/1 Queue (contd.)

- Average number of customers in system?

\[N = \sum_{n=0}^{\infty} np_n = (1-\rho)\sum_{n=0}^{\infty} n\rho^n = (1-\rho)\rho\sum_{n=0}^{\infty} n\rho^{n-1} \]

\[\Rightarrow N = \rho(1-\rho)\frac{1}{(1-\rho)^2} = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda} \]

- Little’s Theorem: average time in system?

\[T = \frac{N}{\lambda} = 1 \frac{\lambda}{\lambda \mu-\lambda} = 1 \frac{\lambda}{\mu-\lambda} \]

- Average waiting time and number of customers in the queue – excluding service?

\[W = T - \frac{1}{\mu} = \frac{\rho}{\mu-\lambda} \text{ and } N_Q = \lambda W = \frac{\rho^2}{1-\rho} \]
M/M/1 Queue (contd.)

- $\rho = \lambda / \mu$: utilization factor
 - $\Rightarrow \rho = 1 - p_0$
 - holds for any M/G/1 queue too
 - Long term proportion of time that server is busy

- Stability condition: $\rho < 1$
 - Arrival rate should be less than the service rate
M/M/1 Queue: Discrete-Time Approach

- Focus on times 0, δ, 2δ,... (δ arbitrarily small)
- Study discrete time process \(N_k = N(\delta k) \)

\[
\lim_{t \to \infty} P\{N(t) = n\} = \lim_{k \to \infty} P\{N_k = n\}
\]

Transition probabilities?

\[
P_{00} = 1 - \lambda \delta + o(\delta) \\
P_{ii} = 1 - \lambda \delta - \mu \delta + o(\delta), \quad i \geq 1 \\
P_{i,i+1} = \lambda \delta + o(\delta), \quad i \geq 0 \\
P_{i,i-1} = \mu \delta + o(\delta), \quad i \geq 0 \\
P_{ij} = o(\delta), \quad |i-j| > 1
\]

- Discrete time Markov chain, omitting \(o(\delta) \)
M/M/1 Queue: Discrete-Time Approach

- Discrete-time birth-death process → DBE:
 \[
 [\mu \delta + o(\delta)] \pi_n = [\lambda \delta + o(\delta)] \pi_{n-1} \Rightarrow \\
 \pi_n = \frac{\lambda \delta + o(\delta)}{\mu \delta + o(\delta)} \pi_{n-1} = \cdots = \left[\frac{\lambda \delta + o(\delta)}{\mu \delta + o(\delta)}\right]^n \pi_0
 \]

- Taking the limit \(\delta \to 0 \):
 \[
 \lim_{\delta \to 0} \pi_n = \lim_{\delta \to 0} \left[\frac{\lambda \delta + o(\delta)}{\mu \delta + o(\delta)}\right]^n = \lim_{\delta \to 0} \pi_0 \Rightarrow p_n = \left(\frac{\lambda}{\mu}\right)^n p_0
 \]

- Done!
Transition Probabilities?

- A_k: number of customers that arrive in $I_k = (k\delta, (k+1)\delta]$
- D_k: number of customers that depart in $I_k = (k\delta, (k+1)\delta]$
- Transition probabilities P_{ij} depend on conditional probabilities: $Q(a,d \mid n) = P\{A_k=a, D_k=d \mid N_{k-1}=n\}$
- Calculate $Q(a,d \mid n)$ using arrival and departure statistics
- Use Taylor expansion $e^{-\lambda\delta} = 1 - \lambda\delta + o(\delta)$, $e^{-\mu\delta} = 1 - \mu\delta + o(\delta)$, to express as a function of δ
- Poisson arrivals: $P\{A_k \geq 2\} = o(\delta)$
- Probability there are more than 1 arrivals in I_k is $o(\delta)$
 - Show: probability of more than one event (arrival or departure) in I_k is $o(\delta)$
- See details in textbook
Example: Slowing Down

M/M/1 system: slow down the arrival and service rates by the same factor m

Utilization factors are the same \Rightarrow stationary distributions the same, average number in the system the same

Delay in the slower system is m times higher

- Average number in queue is the same, but in the 1st system the customers move out faster
Example: Statistical Multiplexing vs. TDM

- m identical Poisson streams with rate λ/m; link with capacity 1; packet lengths iid, exponential with mean $1/\mu$
- Alternative: split the link to m channels with capacity $1/m$ each, and dedicate one channel to each traffic stream
- Delay in each “queue” becomes m times higher
 - Statistical multiplexing vs. TDM or FDM
 - When is TDM or FDM preferred over statistical multiplexing?

\[T' = \frac{m}{\mu - \lambda} = mT \]
Outline

- M/M/1 Queue
- Poisson Arrivals See Time Averages (PASTA)
- M/M/* Queues
- Introduction to Sojourn Times
“PASTA” Theorem

Markov chain: “stationary” or “in steady-state:”
- Process started at the stationary distribution, or
- Process runs for an infinite time $t \to \infty$

Probability that at any time t, process is in state i is equal to the stationary probability

$$p_i = \lim_{t \to \infty} P\{N(t) = i\} = \lim_{t \to \infty} \frac{T_i(t)}{t}$$

Question: For an M/M/1 queue: given t is an arrival time, what is the probability that $N(t) = i$?

Answer: Poisson Arrivals See Time Averages (PASTA)!
PASTA Theorem (contd.)

- Steady-state probabilities:
 \[p_n = \lim_{t \to \infty} P\{N(t) = n\} \]

- Steady-state probabilities upon arrival:
 \[a_n = \lim_{t \to \infty} P\{N(t^-) = n \mid \text{arrival at } t\} \]

- Lack of Anticipation Assumption (LAA): Future inter-arrival times and service times of previously arrived customers are independent

- **Theorem:** In a queueing system satisfying LAA:
 1. If the arrival process is Poisson:
 \[a_n = p_n, \quad n = 0, 1, \ldots \]
 2. Poisson is the only process with this property (necessary and sufficient condition)
PASTA Theorem (contd.)

Doesn’t PASTA apply for all arrival processes?

- Deterministic arrivals every 10 sec
- Deterministic service times 9 sec
- Upon arrival: system is always empty $a_1=0$
- Average time with one customer in system: $p_1=0.9$

- “Customer” averages need not be time averages
- Randomization does not help, unless Poisson!
PASTA Theorem: Proof

- Define $A(t, t + \delta)$, the event that an arrival occurs in $[t, t + \delta)$
- Given that a customer arrives at t, probability of finding the system in state n:

$$P\{N(t^-) = n \mid \text{arrival at } t\} = \lim_{\delta \to 0} P\{N(t^-) = n \mid A(t, t + \delta)\}$$

- $A(t, t + \delta)$ is independent of the state before time t, $N(t^-)$
 - $N(t^-)$ determined by arrival times $< t$, and corresponding service times
 - $A(t, t + \delta)$ independent of arrivals $< t$ [Poisson]
 - $A(t, t + \delta)$ independent of service times of customers arrived $< t$ [LAA]

$$\Rightarrow a_n(t) = \lim_{\delta \to 0} P\{N(t^-) = n \mid A(t, t + \delta)\} = \lim_{\delta \to 0} \frac{P\{N(t^-) = n, A(t, t + \delta)\}}{P\{A(t, t + \delta)\}}$$

$$= \lim_{\delta \to 0} \frac{P\{N(t^-) = n\}P\{A(t, t + \delta)\}}{P\{A(t, t + \delta)\}} = P\{N(t^-) = n\}$$

$$a_n = \lim_{t \to \infty} a_n(t) = \lim_{t \to \infty} P\{N(t^-) = n\} = p_n$$
PASTA Theorem: Intuitive Proof

- t_a and t_o: randomly selected arrival and observation times, respectively

- The *arrival processes prior to t_a and t_o* respectively are *stochastically identical*
 - The probability distributions of the time to the first arrival before t_a and t_o are *both* exponentially distributed with parameter λ (why?)
 - Extending this to the 2nd, 3rd, etc. arrivals before t_a and t_o establishes the result

- State of the system at a given time t depends *only* on the arrivals (and associated service times) before t

- Since the arrival processes before arrival times and random times are identical, so is the state of the system they see
Arrivals that Do not See Time-Averages

Example 1: Non-Poisson arrivals
- IID inter-arrival times, uniformly distributed between in 2 and 4 sec
- Service times deterministic 1 sec
 - Upon arrival: system is always empty
 - $\lambda = 1/3$, $T = 1 \rightarrow N = T/\lambda = 1/3 \rightarrow p_1 = 1/3$

Example 2: LAA violated
- Poisson arrivals
- Service time of customer i: $S_i = \alpha T_{i+1}$, $\alpha < 1$
 - Upon arrival: system is always empty
 - Average time the system has 1 customer: $p_1 = \alpha$
Distribution after Departure

- Steady-state probabilities after departure:

\[d_n = \lim_{t \to \infty} P\{X(t^+) = n \mid \text{departure at } t\} \]

- Under very general assumptions:
 - \(N(t) \) changes in unit increments
 - limits \(a_n \) and \(d_n \) exist (i.e., system reaches steady state with all \(n \) having positive steady-state distribution)

\[a_n = d_n, \, n=0,1,\ldots \]

=> In steady-state, system appears stochastically identical to an arriving and departing customer

- Poisson arrivals + LAA: an arriving and a departing customer see a system that is stochastically identical to the one seen by an observer looking at an arbitrary time
Outline

- M/M/1 Queue
- Poisson Arrivals See Time Averages (PASTA)
- M/M/* Queues
- Introduction to Sojourn Times
M/M/* Queues

- Poisson arrival process
 - Interarrival times: iid, exponential
- Service times: iid, exponential
- Service times and interarrival times: independent
- \(N(t) \): Number of customers in system at time \(t \) (state)

- \(\{N(t): t \geq 0\} \) can be modeled as a continuous-time Markov chain
- \textit{Transition rates depend on the characteristics of the system}
- PASTA Theorem always holds
M/M/1/K Queue

- M/M/1 with finite waiting room
 - At most K customers in the system
 - Customer that upon arrival finds K customers in system is dropped
- Stationary distribution: \(p_n = \rho^n p_0, n = 1, 2, ..., K \)
 \[p_0 = \frac{1 - \rho}{1 - \rho^{K+1}} \]
- Stability condition: always stable – even if \(\rho \geq 1 \)
- Probability of loss – using PASTA theorem:
 \[P\{\text{loss}\} = P\{N(t) = K\} = \frac{\rho^K(1 - \rho)}{1 - \rho^{K+1}} \]
M/M/1/K Queue (proof)

- Exactly as in the M/M/1 queue:
 \[p_n = \rho^n p_0, \quad n = 1, 2, \ldots, K \]

- Normalization constant:
 \[
 \sum_{n=0}^{K} p_n = 1 \Rightarrow p_0 \sum_{n=1}^{K} \rho^n = 1 \Rightarrow p_0 \frac{1 - \rho^{K+1}}{1 - \rho} = 1
 \]
 \[
 \Rightarrow p_0 = \frac{1 - \rho}{1 - \rho^{K+1}}
 \]

- Generalize: Truncating a Markov chain
Truncating a Markov Chain

- \(\{X(t): t \geq 0\} \) continuous-time Markov chain with stationary distribution \(\{p_i: i=0,1,\ldots\} \)
- \(S \) a subset of \(\{0,1,\ldots\} \): set of states; Observe process only in \(S \)
 - Eliminate all states not in \(S \)
 - Set \(\tilde{q}_{ji} = \tilde{q}_{ij} = 0, \ j \in S, i \notin S \)

- \(\{Y(t): t \geq 0\} \): resulting truncated process; If irreducible:
 - Continuous-time Markov chain
 - Stationary distribution
 \[
 \tilde{p}_j = \begin{cases}
 \frac{p_j}{\sum_{i \in S} p_i} & \text{if } j \in S \\
 0 & \text{if } j \notin S
 \end{cases}
 \]
Truncating a Markov Chain: proof

- Possible sufficient condition (GBE)
 \[p_j \sum_{i \in S} q_{ji} = \sum_{i \in S} p_i q_{ij}, \quad j \in S \]

- Verify that distribution of truncated process
 1. Satisfies the GBE
 \[p_j \sum_{i} q_{ji} = \sum_{i} p_i q_{ij} \Rightarrow p_j \sum_{i} q_{ji} = \sum_{i} p_i q_{ij} \Rightarrow \frac{p_j}{p(S)} \sum_{i \in S} q_{ji} = \sum_{i \in S} \frac{p_i}{p(S)} q_{ij} \]
 \[\Rightarrow \tilde{p}_j \sum_{i \in S} q_{ji} = \sum_{i \in S} \tilde{p}_i q_{ij} \Rightarrow \tilde{p}_j \sum_{i \in S} \tilde{q}_{ji} = \sum_{i \in S} \tilde{p}_i \tilde{q}_{ij}, \quad j \in S \]
 2. Satisfies the probability conservation law:
 \[\sum_{i \in S} \tilde{p}_i = \sum_{i \in S} \frac{p_i}{p(S)} = \frac{p(S)}{p(S)} = 1, \quad p(S) \equiv \sum_{i \in S} p_i \]

- Relates to “reversibility”
- Holds for multidimensional chains
M/M/1 Queue with State-Dependent Rates

- Interarrival times: independent, exponential, with parameter λ_n when at state n
- Service times: independent, exponential, with parameter μ_n when at state n
- Service times and interarrival times: independent
- $\{N(t): t \geq 0\}$ is a birth-death process
- Stationary distribution:

\[
p_n = p_0 \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}}, \quad n \geq 1 \quad p_0 = \left[1 + \sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}}\right]^{-1}
\]
M/M/c Queue

- Poisson arrivals with rate λ
- Exponential service times with parameter μ
- c servers
- Arriving customer finds n customers in system
 - $n < c$: it is routed to any idle server
 - $n \geq c$: it joins the waiting queue – all servers are busy
- Birth-death process with state-dependent death rates

$$\mu_n = \begin{cases}
 n\mu, & 1 \leq n \leq c \\
 c\mu, & n \geq c
\end{cases}$$

[Time spent at state n before jumping to $n-1$ is the minimum of $B_n = \min\{n, c\}$ exponentials with parameter μ]
M/M/c Queue

Detailed balance equations

1 ≤ n ≤ c: \[p_n = \frac{\lambda}{n\mu} p_{n-1} = \ldots = \frac{\lambda}{n\mu (n-1)\mu} \ldots \frac{\lambda}{\mu} p_0 = \frac{1}{n!} \left(\frac{\lambda}{\mu} \right)^n p_0 = \frac{(c\rho)^n}{n!} p_0, \quad \rho \equiv \frac{\lambda}{c\mu} \]

n > c: \[p_n = \left(\frac{\lambda}{c\mu} \right)^{n-c} p_c = \frac{1}{c!} \left(\frac{\lambda}{c\mu} \right)^{n-c} p_0 = \frac{c^c}{c!} \left(\frac{\lambda}{c\mu} \right)^n p_0 = \frac{c^c \rho^n}{c!} p_0 \]

Normalizing

\[\sum_{n=0}^{\infty} p_n = 1 \Rightarrow p_0 = \left[1 + \sum_{k=1}^{c-1} \frac{(c\rho)^k}{k!} + \frac{(c\rho)^c}{c!} \sum_{k=c}^{\infty} \rho^{k-c} \right]^{-1} = \left[\sum_{k=0}^{c-1} \frac{(c\rho)^k}{k!} + \frac{(c\rho)^c}{c!} \frac{1}{1-\rho} \right]^{-1} \]
M/M/c Queue

- Probability of queueing – arriving customer finds all servers busy

\[P_Q = P\{\text{queueing}\} = \sum_{n=c}^{\infty} p_n = p_0 \frac{(c\rho)^c}{c!} \sum_{n=c}^{\infty} \rho^{n-c} = \frac{(c\rho)^c}{c!} \frac{1}{1-\rho} p_0 \]

- **Erlang-C Formula**: used in telephony and circuit-switching
 - Call requests arrive with rate \(\lambda \); holding time of a call exponential with mean \(1/\mu \)
 - \(c \) available circuits on a transmission line
 - A call that finds all \(c \) circuits busy, continuously attempts to find a free circuit – “remains in queue”

- **M/M/c/c Queue**: c-server loss system
 - A call that finds all \(c \) circuits busy is blocked
 - **Erlang-B Formula**: popular in telephony
M/M/c Queue

- Expected number of customers waiting in queue – not in service

\[N_Q = \sum_{n=c}^{\infty} (n-c) p_n = p_0 \frac{(c \rho)^c}{c!} \sum_{n=c}^{\infty} (n-c) \rho^{n-c} = p_0 \frac{(c \rho)^c}{c!} \frac{\rho}{(1-\rho)^2} \]

\[= P_Q(1-\rho) \frac{\rho}{(1-\rho)^2} = P_Q \frac{\rho}{1-\rho} \]

- Average waiting time (in queue)

\[W = \frac{N_Q}{\lambda} = P_Q \frac{\rho}{\lambda(1-\rho)} \]

- Average time in system (queued + serviced)

\[T = W + \frac{1}{\mu} = P_Q \frac{\rho}{\lambda(1-\rho)} + \frac{1}{\mu} \]

- Expected number of customers in system

\[N = \lambda T = P_Q \frac{\rho}{(1-\rho)} + c \rho \]
M/M/c/c Queue: c-Server Loss System

- c servers, no waiting room
- An arriving customer that finds all servers busy is blocked
- Stationary distribution:

\[p_n = \frac{(\lambda / \mu)^n}{n!} \left[\sum_{k=0}^{c} \frac{(\lambda / \mu)^k}{k!} \right]^{-1}, \quad n = 0, 1, \ldots, c \]

- Probability of blocking (using PASTA):

\[p_c = \frac{(\lambda / \mu)^c}{c!} \left[\sum_{k=0}^{c} \frac{(\lambda / \mu)^k}{k!} \right]^{-1} \]

- *Erlang-B Formula*: used in telephony and circuit-switching
 - *Results hold for an M/G/c/c queue*
M/M/∞ Queue: Infinite-Server System

- Infinite number of servers – no queueing
- Stationary distribution:
 \[p_n = \frac{(\lambda / \mu)^n}{n!} e^{-\lambda / \mu}, \quad n = 0, 1, ... \]
 Poisson with rate \(\lambda / \mu \)
- Average number of customers & average delay:
 \[N = \frac{\lambda}{\mu}, \quad T = \frac{N}{\lambda} = \frac{1}{\mu} \]

The results hold for an M/G/∞ queue
M/M/c/c and M/M/∞ Queues (proof)

DBE:

\[(n\mu)p_n = \lambda p_{n-1} \implies p_n = \frac{\lambda}{n\mu} p_{n-1} = \frac{\lambda}{n\mu} \frac{\lambda}{(n-1)\mu} p_{n-2} = \cdots = \frac{\lambda \cdot \lambda \cdots \lambda}{n\mu \cdot (n-1)\mu \cdots \mu} p_0\]

\[\implies p_n = \left(\frac{\lambda/\mu}{n!}\right)^n p_0, \quad n = 0, 1, \ldots\]

Normalizing:

\[p_0 = \left[\frac{\sum_{k=0}^{c} (\lambda/\mu)^k}{k!}\right]^{-1}, \quad \text{for M/M/c/c}\]

\[p_0 = \left[\sum_{k=0}^{\infty} (\lambda/\mu)^k / k!\right]^{-1} = e^{-\lambda/\mu}, \quad \text{for M/M/∞}\]
Outline

- M/M/1 Queue
- Poisson Arrivals See Time Averages (PASTA)
- M/M/* Queues
- Introduction to Sojourn Times
Sum of IID Exponential RV's

- X_1, X_2, \ldots, X_n: iid, exponential with parameter λ
- $T = X_1 + X_2 + \ldots + X_n$

- The probability density function of T is:

 $$f_T(t) = \lambda \frac{(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t}, \quad t \geq 0$$

 [Gamma distribution with parameters (n, λ)]

- If X_i is the time between arrivals $i-1$ and i of a certain type of events, then T is the time until the n^{th} event occurs

- For arbitrarily small δ:

 $$P\{n^{th} \text{ arrival occurs in } [t, t + \delta)\} = \delta f_T(t) = \lambda \delta \frac{(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t}$$

- Cumulative distribution function:

 $$P\{t_n \leq t\} = \int_0^t \lambda \frac{(\lambda s)^{n-1}}{(n-1)!} e^{-\lambda s} ds = 1 - P\{n^{th} \text{ arrival occurs after } t\}$$
Sum of IID Exponential RV’s

Example 1: Poisson arrivals with rate λ

- τ_1: time until arrival of 1st customer
- τ_i: i^{th} interarrival time
- $\tau_1, \tau_2, \ldots, \tau_n$: iid exponential with parameter λ
- $t_n = \tau_1 + \tau_2 + \ldots + \tau_n$: arrival time of n-th customer

\blacksquare t_n follows Gamma with parameters (n, λ).

\[
f(t) = \frac{\lambda (\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t}, \quad t \geq 0; \quad \Pr\{t_n \leq t\} = \int_0^t \frac{\lambda (\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t} dt
\]

\blacksquare For arbitrarily small δ:

\[
\Pr\{n^{th} \text{ arrival occurs in } [t, t + \delta)\} = \delta f_{T_n}(t) = \delta \frac{\lambda t^{n-1}}{(n-1)!} e^{-\lambda t}
\]
Sojourn Times in a M/M/1 Queue

- M/M/1 Queue – FCFS
- T_i: time spent in system (queueing + service) by customer i
- T_i: exponentially distributed with parameter $\mu - \lambda$

- Example of a sojourn time of a customer: describes the evolution of the queue together with the specific customer
M/M/1 Queue: Sojourn Times (proof)

Proof 1: Let t_i be the arrival time of customer i, and $N_i = N(t_i^-)$, the number of customers in the system right before the i^{th} arrival.

$$P\{T_i > t\} = \sum_{k=0}^{\infty} P\{T_i > t \mid N_i = k\} P\{N_i = k\}$$

$$= \sum_{k=0}^{\infty} P\{D(t_i + t) - D(t_i) \leq k\} \rho^k$$

$$= \sum_{k=0}^{\infty} \sum_{n=0}^{k} e^{-\mu t} \frac{\mu t^n}{n!} \cdot (1 - \rho) \rho^k$$

$$= e^{-\mu t} \sum_{n=0}^{\infty} \frac{\mu t^n}{n!} \sum_{k=n}^{\infty} (1 - \rho) \rho^k$$

$$= e^{-\mu t} \sum_{n=0}^{\infty} \frac{\mu t^n}{n!} \cdot \rho^n = e^{-\mu t} \sum_{n=0}^{\infty} \frac{\lambda t^n}{n!}$$

$$= e^{-\mu t} e^{\lambda t} = e^{-(\mu - \lambda) t}$$
M/M/1 Queue: Sojourn Times (proof)

Proof 1: Note that:

- Time customer \(i \) stays in the system is greater than \(t \), given that it finds \(k \) customers in the system, iff the number of departures in interval \((t_i, t_i + t) \) are less than \(k + 1 \). The server is always busy during that interval, thus times between departures are iid, exponential with parameter \(\mu \). Then:

\[
P\{D(t_i + t) - D(t_i) = n\} = e^{-\mu t} \frac{(\mu t)^n}{n!}, \quad 0 \leq n \leq k
\]

- \(P\{N_i = k\} = p_k \), by PASTA theorem.

- Eq. (3) follows by changing order of summation.

- Eq. (4) uses:

\[
\sum_{k=n}^{\infty} \rho^k = \sum_{k=0}^{\infty} \rho^k - \sum_{k=0}^{n-1} \rho^k = \frac{1}{1-\rho} - \frac{1-\rho^n}{1-\rho} = \frac{\rho^n}{1-\rho}
\]
Summary

- M/M/1 Queue
- Poisson Arrivals See Time Averages (PASTA)
- M/M/* Queues
- Introduction to Sojourn Times
Homework #9

- Problems 3.23 and 3.26 of R1

- Hints:
 - Prob. 3.23: see book R1
 - Prob. 3.26: define system state as the “number of operational machines”

- Grading:
 - Overall points 100
 - 50 points for 3.23
 - 50 points for 3.26