Queuing Analysis:

Review of Markov Chain Theory

Hongwei Zhang

http://www.cs.wayne.edu/~hzhang

Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis.
Outline

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Outline

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Markov Chain?

- Stochastic process that takes values in a *countable* set
 - Example: \(\{0,1,2,...,m\}\), or \(\{0,1,2,...\}\)
 - Elements represent possible “states”
 - Chain transits from state to state

- *Memoryless (Markov) Property*: Given the present state, future transitions of the chain are independent of past history

- Markov Chains: discrete- or continuous- time
Outline

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Discrete-Time Markov Chain

- Discrete-time stochastic process \(\{X_n: n = 0, 1, 2, \ldots \} \)
- Takes values in \(\{0, 1, 2, \ldots \} \)
- Memoryless property:
 \[
P\{X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0 \} = P\{X_{n+1} = j \mid X_n = i \}
 \]
 \[
P_{ij} = P\{X_{n+1} = j \mid X_n = i \}
 \]
- Transition probabilities \(P_{ij} \)
 \[
P_{ij} \geq 0, \quad \sum_{j=0}^{\infty} P_{ij} = 1
 \]
- Transition probability matrix \(P = [P_{ij}] \)
Chapman-Kolmogorov Equations

- n step transition probabilities

\[P_{ij}^n = P\{X_{n+m} = j \mid X_m = i\}, \quad n, m \geq 0, \ i, j \geq 0 \]

- How to calculate?

 - Chapman-Kolmogorov equations

\[P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m, \quad n, m \geq 0, \ i, j \geq 0 \]

 - P_{ij}^n is element (i, j) in matrix P^n

 - Recursive computation of state probabilities
State Probabilities – Stationary Distribution

- State probabilities (time-dependent)
 \[\pi^n_j = P\{X_n = j\}, \quad \pi^n = (\pi^n_0, \pi^n_1, \ldots) \]
 \[P\{X_n = j\} = \sum_{i=0}^{\infty} P\{X_{n-1} = i\}P\{X_n = j \mid X_{n-1} = i\} \implies \pi^n_j = \sum_{i=0}^{\infty} \pi^{n-1}_i P_{ij} \]

 In matrix form:
 \[\pi^n = \pi^{n-1}P = \pi^{n-2}P^2 = \ldots = \pi^0 P^n \]

- If time-dependent distribution converges to a limit
 \[\pi = \lim_{n \to \infty} \pi^n \quad \pi = \pi P \]
 \[\pi \] is called the *stationary distribution* (or *steady state distribution*)
 - existence depends on the structure of Markov chain
Classification of Markov Chains

Irreducible:
- States i and j communicate:
 \[\exists n, m: P_{ij}^n > 0, P_{ji}^m > 0 \]
- Irreducible Markov chain: all states communicate

Aperiodic:
- State i is periodic:
 \[\exists d > 1: P_{ii}^n > 0 \Rightarrow n = \alpha d \]
- Aperiodic Markov chain: none of the states is periodic
Limit Theorems

Theorem 1: Irreducible aperiodic Markov chain

- For every state \(j \), the following limit

\[
\pi_j = \lim_{n \to \infty} P \{ X_n = j \mid X_0 = i \}, \quad i = 0, 1, 2, \ldots
\]

exists and is independent of initial state \(i \)

- \(N_j(k) \): number of visits to state \(j \) up to time \(k \)

\[
P \left\{ \pi_j = \lim_{k \to \infty} \frac{N_j(k)}{k} \mid X_0 = i \right\} = 1
\]

\[\Rightarrow \pi_j: \text{frequency the process visits state } j\]
Existence of Stationary Distribution

Theorem 2: Irreducible aperiodic Markov chain. There are two possibilities for scalars:

\[
\pi_j = \lim_{n \to \infty} P\{X_n = j \mid X_0 = i\} = \lim_{n \to \infty} P_{ij}^n
\]

1. \(\pi_j = 0 \), for all states \(j \) ➡ No stationary distribution
2. \(\pi_j > 0 \), for all states \(j \) ➡ \(\pi \) is the *unique* stationary distribution

Remark: If the number of states is finite, case 2 is the only possibility.
Ergodic Markov Chains

- A state \(j \) is \textit{positive recurrent} if the process returns to state \(j \) “infinitely often”

- Formal definition:
 - \(F_{ij}(n) \) \((n \geq 1)\): the probability, given \(X_0 = i \), that state \(j \) occurs at some time between 1 and \(n \) inclusive
 - \(T_{ij} \): the first passage time from \(i \) to \(j \)
 - A state \(j \) is \textit{recurrent} (or \textit{persistent}) if \(F_{jj}(\infty) = 1 \), and \textit{transient} otherwise
 - A state \(j \) is \textit{positive recurrent} (or \textit{non-null persistent}) if \(F_{jj}(\infty) = 1 \) and \(E(T_{jj}) < \infty \)
 - A state \(j \) is \textit{null recurrent} (or \textit{null persistent}) if \(F_{jj}(\infty) = 1 \) but \(E(T_{jj}) = \infty \)

- Note: “positive recurrent \(\Rightarrow \) irreducible” always hold, but “irreducible \(\Rightarrow \) positive recurrent” is guaranteed to hold only for finite MC
Ergodic MC (contd.)

- Example: a MC with countably infinite state space

All states are positive recurrent if $p < \frac{1}{2}$, null recurrent if $p = \frac{1}{2}$, and transient if $p > \frac{1}{2}$

- A state is ergodic if it is aperiodic and positive recurrent

- A MC is ergodic if every state is ergodic

- Ergodic chains have a unique stationary distribution

$$\pi_j = 1/E(T_{jj}), \ j = 0, 1, 2, ...$$

- Note: Ergodicity \Rightarrow Time Averages $=$ Stochastic Averages
Outline

- Markov Chain
- Discrete-Time Markov Chains
- **Calculating Stationary Distribution**
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Calculation of Stationary Distribution

A. Finite number of states

- Solve explicitly the system of equations

\[\pi_j = \sum_{i=0}^{m} \pi_i P_{ij}, \quad j = 0,1,\ldots,m \]

\[\sum_{i=0}^{m} \pi_i = 1 \]

- Or, numerically from \(P^n \) which converges to a matrix with rows equal to \(\pi \)
 - Suitable for a small number of states

B. Infinite number of states

- Cannot apply previous methods to problem of infinite dimension

- Guess a solution to recurrence:

\[\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \quad j = 0,1,\ldots, \]

\[\sum_{i=0}^{\infty} \pi_i = 1 \]
Example: Finite Markov Chain

- Absent-minded professor uses two umbrellas when commuting between home and office.
- If it rains and an umbrella is available at her location, she takes it. If it does not rain, she always forgets to take an umbrella.
- Let p be the probability of rain each time she commutes.

Q: What is the probability that she gets wet on any given day?

- Markov chain formulation
- i is the number of umbrellas available at her current location

![Transition matrix diagram]

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1-p & p \\ 1-p & p & 0 \end{bmatrix}$$
Example: Finite Markov Chain

\[P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1-p & p \\ 1-p & p & 0 \end{bmatrix} \]

\[\begin{aligned} \pi_0 &= (1-p)\pi_2 \\ \pi_1 &= (1-p)\pi_1 + p\pi_2 \\ \pi_2 &= \pi_0 + p\pi_1 \\ \pi_0 + \pi_1 + \pi_2 &= 1 \end{aligned} \]

\[P\{\text{gets wet}\} = \pi_0 p = p \frac{1-p}{3-p} \]
Example: Finite Markov Chain

Taking $p = 0.1$:

$$
\pi = \left(\frac{1-p}{3-p}, \frac{1}{3-p}, \frac{1}{3-p} \right) = (0.310, 0.345, 0.345)
$$

$$
P = \begin{bmatrix}
0 & 0 & 1 \\
0 & 0.9 & 0.1 \\
0.9 & 0.1 & 0
\end{bmatrix}
$$

Numerically determine limit of P^n

$$
\lim_{n \to \infty} P^n = \begin{bmatrix}
0.310 & 0.345 & 0.345 \\
0.310 & 0.345 & 0.345 \\
0.310 & 0.345 & 0.345
\end{bmatrix} \\
\text{ (n \approx 150)}
$$

Effectiveness depends on structure of P
Outline

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Global Balance Equations

- **Global Balance Equations (GBE)**

\[
\pi_j \sum_{i=0}^{\infty} P_{ji} = \sum_{i=0}^{\infty} \pi_i P_{ij} \iff \pi_j \sum_{i \neq j} P_{ji} = \sum_{i \neq j} \pi_i P_{ij}, \quad j \geq 0
\]

- \(\pi_j P_{ji} \) is the frequency of transitions from \(j \) to \(i \)

\[
\left(\begin{array}{c}
\text{Frequency of} \\
\text{transitions out of} \ j
\end{array} \right) = \left(\begin{array}{c}
\text{Frequency of} \\
\text{transitions into} \ j
\end{array} \right)
\]

- **Intuition:** 1) \(j \) visited infinitely often; 2) for each transition out of \(j \) there must be a subsequent transition into \(j \) with probability 1
Global Balance Equations (contd.)

- **Alternative Form of GBE**
 \[
 \sum_{j \in S} \pi_j \sum_{i \in S} P_{ji} = \sum_{i \in S} \pi_i \sum_{j \in S} P_{ij}, \quad S \subseteq \{0,1,2,\ldots\}
 \]

- **If a probability distribution satisfies the GBE, then it is the unique stationary distribution of the Markov chain**

- **Finding the stationary distribution:**
 - Guess distribution from properties of the system
 - Verify that it satisfies the GBE
 - Special structure of the Markov chain simplifies task
Global Balance Equations – Proof

First form:
\[\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij} \quad \text{and} \quad \sum_{i=0}^{\infty} P_{ji} = 1 \implies \]
\[\pi_j \sum_{i=0}^{\infty} P_{ji} = \sum_{i=0}^{\infty} \pi_i P_{ij} \iff \pi_j \sum_{i \neq j} P_{ji} = \sum_{i \neq j} \pi_i P_{ij} \]

Second form:
\[\pi_j \sum_{i=0}^{\infty} P_{ji} = \sum_{i=0}^{\infty} \pi_i P_{ij} \implies \sum_{j \in S} \pi_j \left(\sum_{i \in S} P_{ji} + \sum_{i \notin S} P_{ji} \right) = \sum_{j \in S} \left(\sum_{i \in S} \pi_i P_{ij} + \sum_{i \notin S} \pi_i P_{ij} \right) \implies \]
\[\sum_{j \in S} \pi_j \sum_{i \notin S} P_{ji} = \sum_{i \in S} \sum_{j \in S} P_{ij} \]
Outline

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Birth-Death Process

- One-dimensional Markov chain with transitions only between neighboring states: $P_{ij}=0$, if $|i-j|>1$

- Detailed Balance Equations (DBE)

$$\pi_n P_{n,n+1} = \pi_{n+1} P_{n+1,n} \quad n = 0,1,...$$

- Proof: GBE with $S=\{0,1,...,n\}$ give:

$$\sum_{j=0}^{n} \sum_{i=n+1}^{\infty} \pi_j P_{ji} = \sum_{j=0}^{n} \sum_{i=n+1}^{\infty} \pi_i P_{ij} \Rightarrow \pi_n P_{n,n+1} = \pi_{n+1} P_{n+1,n}$$
Example: Discrete-Time Queue

- In a time-slot, one packet arrival with probability p or zero arrivals with probability $1-p$
- In a time-slot, the packet in service departs with probability q or stays with probability $1-q$
- Independent arrivals and service times
- State: number of packets in system

\[
\begin{align*}
0 & \quad p & 1 & \quad p(1-q) & 2 & \ldots & n & \quad p & \quad p(1-q) & n+1 & \ldots \\
(1-p) & q(1-p) & (1-p)(1-q) + pq & q(1-p) & & & q(1-p) & (1-p)(1-q) + pq & \\
\end{align*}
\]
Example: Discrete-Time Queue (contd.)

\[\pi_0 p = \pi_1 q(1-p) \Rightarrow \pi_1 = \frac{p/q}{1-p} \pi_0 \]

\[\pi_n p(1-q) = \pi_{n+1} q(1-p) \Rightarrow \pi_{n+1} = \frac{p(1-q)}{q(1-p)} \pi_n, \quad n \geq 1 \]

Define: \(\rho \equiv \frac{p}{q}, \quad \alpha \equiv \frac{p(1-q)}{q(1-p)} \)

\[
\begin{cases}
\pi_1 = \frac{\rho}{1-p} \pi_0 \\
\pi_n = \alpha^{n-1} \frac{\rho}{1-p} \pi_0, \quad n \geq 1 \\
\pi_{n+1} = \alpha \pi_n, \quad n \geq 1
\end{cases}
\]
Example: Discrete-Time Queue (contd.)

- Having determined the distribution as a function of π_0
 $$\pi_n = \alpha^{n-1} \frac{\rho}{1-p} \pi_0, \ n \geq 1$$
 How to calculate the normalization constant π_0?

- Probability conservation law:
 $$\sum_{n=0}^{\infty} \pi_n = 1 \Rightarrow \pi_0 = \left[1 + \frac{\rho}{1-p} \sum_{n=1}^{\infty} \alpha^{n-1} \right]^{-1} = \left[1 + \frac{\rho}{(1-p)(1-\alpha)} \right]^{-1}$$

- Noting that
 $$(1-p)(1-\alpha) = (1-p) \frac{q(1-p) - p(1-q)}{q(1-p)} = \frac{q-p}{q} = 1-\rho$$

 $$\begin{cases}
 \pi_0 = 1-\rho \\
 \pi_n = \rho(1-\alpha)\alpha^{n-1}, \ n \geq 1
 \end{cases}$$
Detailed Balance Equations

- General case:
 \[\pi_j P_{ji} = \pi_i P_{ij} \quad i, j = 0,1,... \]

- Need NOT hold for every Markov chain

- If hold, it implies the GBE; greatly simplify the calculation of stationary distribution

Methodology:

- Assume DBE hold – have to guess their form
- Solve the system defined by DBE and \(\Sigma_i \pi_i = 1 \)
 - If system is inconsistent, then DBE does not hold
 - If system has a solution \(\{\pi_i: i=0,1,...\} \), then it is the unique stationary distribution
Outline

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Generalized Markov Chains

- Markov chain on a set of states \{0, 1, \ldots\}, that whenever enters state \(i\)
 - The next state that will be entered is \(j\) with probability \(P_{ij}\)
 - Given that the next state entered will be \(j\), the time it spends at state \(i\) until the transition occurs is a RV with distribution \(F_{ij}\)

- \(\{Z(t): t \geq 0\}\) describing the state of the chain at time \(t\): *Generalized Markov chain*, or *Semi-Markov process*

 - Does GMC have the Markov property?
 - Future depends on 1) the present state, and 2) the length of time the process has spent in this state
Generalized Markov Chains (contd.)

- T_i: time process spends at state i, before making a transition – *holding time*

- Probability distribution function of T_i

 \[
 H_i(t) = P\{T_i \leq t\} = \sum_{j=0}^{\infty} P\{T_i \leq t \mid \text{next state } j\} P_{ij} = \sum_{j=0}^{\infty} F_{ij}(t) P_{ij}
 \]

 \[
 E[T_i] = \int_0^\infty t \, dH_i(t)
 \]

- T_{ii}: time between successive transitions to i

- X_n is the n^{th} state visited. \{\(X_n: n=0,1,\ldots\}\)
 - Is a Markov chain: *embedded* Markov chain
 - Has transition probabilities P_{ij}

- Semi-Markov process *irreducible*: if its embedded Markov chain is irreducible
Limit Theorems

Theorem 3: given an irreducible semi-Markov process w/ $E[T_{ii}] < \infty$

- For any state j, the following limit
 \[
 p_j = \lim_{t \to \infty} P\{Z(t) = j \mid Z(0) = i\}, \quad i = 0,1,2,\ldots
 \]
 exists and is independent of the initial state.
 \[
 p_j = \frac{E[T_{ij}]}{E[T_{ii}]}
 \]

- $T_j(t)$: time spent at state j up to time t
 \[
 P\left\{ p_j = \lim_{t \to \infty} \frac{T_j(t)}{t} \mid Z(0) = i \right\} = 1
 \]
 - p_j is equal to the proportion of time spent at state j
Theorem 4: given an irreducible semi-Markov process where $E[T_{ii}] < \infty$, and the embedded Markov chain is ergodic w/ stationary distribution π

$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \ j \geq 0; \ \sum_{i=0}^{\infty} \pi_i = 1$

then, with probability 1, the occupancy distribution of the semi-Markov process

$p_j = \frac{\pi_j E[T_j]}{\sum_i \pi_i E[T_i]}, \ j = 0, 1, ...$

- π_j: proportion of transitions into state j
- $E[T_j]$: mean time spent at j

► Probability of being at j is proportional to $\pi_j E[T_j]$
Outline

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Continuous-Time Markov Chains (def.?)

Continuous-time process \(\{X(t): t \geq 0\} \) taking values in \(\{0,1,2,...\} \).

Whenever it enters state \(i \)

- Time it spends at state \(i \) is *exponentially distributed* with parameter \(\nu_i \)

- When it leaves state \(i \), it enters state \(j \) with probability \(P_{ij} \) where \(\sum_{j \neq i} P_{ij} = 1 \)

- Continuous-time Markov chain is a semi-Markov process with

\[
F_{ij}(t) = 1 - e^{-\nu_i t}, \quad i, j = 0,1,...
\]

- Exponential holding time \(\Rightarrow \) a continuous-time Markov chain has the Markov property
Continuous-Time Markov Chains

- When at state i, the process makes transitions to state $j \neq i$ with rate:
 \[q_{ij} \equiv \nu_i P_{ij} \]

- Total rate of transitions out of state i
 \[\sum_{j \neq i} q_{ij} = \nu_i \sum_{j \neq i} P_{ij} = \nu_i \]

- Average time spent at state i before making a transition:
 \[E[T_i] = 1/\nu_i \]
Occupancy Probability

- A continuous-time Markov chain is irreducible and regular, if
 - Embedded Markov chain is irreducible
 - Number of transitions in a finite time interval is finite with probability 1
- From Theorem 3: for any state j, the limit

 \[p_j = \lim_{t \to \infty} P\{X(t) = j \mid X(0) = i\}, \quad i = 0, 1, 2, \ldots \]

 exists and is independent of the initial state
 - p_j is the steady-state occupancy probability of state j
 - p_j is equal to the proportion of time spent at state j
Global Balance Equations

- Two possibilities for the occupancy probabilities:
 - \(p_j = 0 \), for all \(j \)
 - \(p_j > 0 \), for all \(j \), and \(\sum_j p_j = 1 \)

- Global Balance Equations
 \[
 p_j \sum_{i \neq j} q_{ji} = \sum_{i \neq j} p_i q_{ij}, \quad j = 0, 1, \ldots
 \]
 - Rate of transitions out of \(j \) = rate of transitions into \(j \)
 - If a distribution \(\{p_j: j = 0, 1, \ldots\} \) satisfies GBE, then it is the unique occupancy distribution of the Markov chain

- Alternative form of GBE:
 \[
 \sum_{j \in S} p_j \sum_{i \in S} q_{ji} = \sum_{i \in S} p_i \sum_{j \in S} q_{ij}, \quad S \subseteq \{0, 1, \ldots\}
 \]
Detailed Balance Equations

- Detailed Balance Equations
 \[p_j q_{ji} = p_i q_{ij}, \quad i, j = 0, 1, ... \]

😊 Simplify the calculation of the stationary distribution

😢 Need not hold for every Markov chain

- Examples: birth-death processes, and reversible Markov chains
Birth-Death Process

- Transitions only between neighboring states
 \[q_{i,i+1} = \lambda_i, \quad q_{i,i-1} = \mu_i, \quad q_{ij} = 0, \quad |i-j| > 1 \]

- Detailed Balance Equations
 \[\lambda_n p_n = \mu_{n+1} p_{n+1}, \quad n = 0, 1, \ldots \]

- Proof: GBE with \(S =\{0,1,\ldots,n\} \) give:
 \[\sum_{j=0}^{n} \sum_{i=0}^{\infty} p_j q_{ji} = \sum_{j=0}^{n} \sum_{i=0}^{\infty} p_i q_{ij} \Rightarrow \lambda_n p_n = \mu_{n+1} p_{n+1} \]
Birth-Death Process

\[\mu_n p_n = \lambda_{n-1} p_{n-1} \Rightarrow \]
\[p_n = \frac{\lambda_{n-1}}{\mu_n} p_{n-1} = \frac{\lambda_{n-1}}{\mu_n} \frac{\lambda_{n-2}}{\mu_{n-1}} p_{n-2} = \cdots = \frac{\lambda_{n-1} \lambda_{n-2} \cdots \lambda_0}{\mu_n \mu_{n-1} \cdots \mu_1} p_0 \]
\[p_0 = p_0 \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}} \]

\[\sum_{n=0}^{\infty} p_n = 1 \iff p_0 \left[1 + \sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}} \right] = 1 \iff p_0 = \left[1 + \sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}} \right]^{-1}, \text{ if } \sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_i}{\mu_{i+1}} < \infty \]

- Use DBE to determine state probabilities as a function of \(p_0 \)
- Use the probability conservation law to find \(p_0 \)
- Using DBE in solving problems:
 - Prove that DBE hold, or
 - Justify validity (e.g. reversible process), or
 - Assume they hold – have to guess their form – and solve system
M/M/1 Queue

- Arrival process: Poisson with rate λ
- Service times: iid, exponential with parameter μ
- Service times and interarrival times: independent
- Single server
- Infinite waiting room
- $\mathbb{N}(t)$: Number of customers in system at time t (state)
M/M/1 Queue

- Birth-death process → DBE
 \[\mu p_n = \lambda p_{n-1} \Rightarrow \]
 \[p_n = \frac{\lambda}{\mu} p_{n-1} = \rho p_{n-1} = \ldots = \rho^n p_0 \]

- Normalization constant
 \[\sum_{n=0}^{\infty} p_n = 1 \Leftrightarrow p_0 \left[1 + \sum_{n=1}^{\infty} \rho^n \right] = 1 \Leftrightarrow p_0 = 1 - \rho \quad \text{if } \rho < 1 \]

- Stationary distribution
 \[p_n = \rho^n (1 - \rho), \quad n = 0, 1, \ldots \]
The M/M/1 Queue

- **Average number of customers**
 \[N = \sum_{n=0}^{\infty} np_n = (1 - \rho) \sum_{n=0}^{\infty} n \rho^n = (1 - \rho) \rho \sum_{n=0}^{\infty} n \rho^{n-1} \]
 \[\Rightarrow N = \rho(1 - \rho) \frac{1}{(1 - \rho)^2} = \frac{\rho}{1 - \rho} = \frac{\lambda}{\mu - \lambda} \]

- **Applying Little’s Theorem, we have**
 \[T = \frac{N}{\lambda} = \frac{1}{\frac{\lambda}{\mu - \lambda}} = \frac{1}{\mu - \lambda} \]

- **Similarly, the average waiting time and number of customers in the queue is given by**
 \[W = T - \frac{1}{\mu} = \frac{\rho}{\mu - \lambda} \text{ and } N_Q = \lambda W = \frac{\rho^2}{1 - \rho} \]
Summary

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Birth-Death Process
 - Detailed Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Homework #8

- Problem 3.14 of R1

- Hints:
 - For a service system, the expected number of customers is finite if the service rate is greater than the customer arrival rate.
 - To solve the problem, think of how to model the system as a Markov process. You may also find Little's Theorem be of some use in solving the problem.

- Grading:
 - Overall points 100
 - 30 points for 3.14(a)
 - 70 points for 3.14(b)