Review: Discrete Event Random Processes

Hongwei Zhang

http://www.cs.wayne.edu/~hzhang
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Markov chain

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Markov chain

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Markov Chain?

- Stochastic process that takes values in a *countable* set
 - Example: \{0,1,2,\ldots,m\}, or \{0,1,2,\ldots\}
 - Elements represent possible “states”
 - Chain transits from state to state

- *Memoryless (Markov) Property*: Given the present state, future transitions of the chain are independent of past history

- Markov Chains: discrete- or continuous- time
Markov chain

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Discrete-Time Markov Chain (DTMC)

- Discrete-time stochastic process \(\{X_n: n = 0,1,2,...\} \)
- Takes values in \(\{0,1,2,...\} \)
- Memoryless property:
 \[
 P\{X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0\} = P\{X_{n+1} = j \mid X_n = i\}
 \]
 \[
 P_{ij} = P\{X_{n+1} = j \mid X_n = i\}
 \]

- Transition probabilities \(P_{ij} \)
 \[
 P_{ij} \geq 0, \quad \sum_{j=0}^{\infty} P_{ij} = 1
 \]

- Transition probability matrix \(P = [P_{ij}] \)

Note: future and past are independent given the present; but they are not unconditionally independent.

Also written as \(P_{i,j} \)
Composition of DTMCs

- Given two *independent* DTMCs X_n, $n \geq 0$, on S and Y_n, $n \geq 0$, on T with transition probability matrices P and Q; then $Z_n = (X_n, Y_n)$ is a DTMC on $S \times T$ with

$$
\Pr(Z_{n+1} = (s, t_2) \mid Z_n = (s_1, t_1)) = p_{s_1, s_2}q_{t_1, t_2}
$$

- Multiple mutually independent DTMCs can be composed in a similar fashion
Chapman-Kolmogorov Equations

- n step transition probabilities

$P_{ij}^n = P\{X_{n+m} = j \mid X_m = i\}, \quad n, m \geq 0, i, j \geq 0$

- How to calculate?

- Chapman-Kolmogorov equations

$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m, \quad n, m \geq 0, i, j \geq 0$

- P_{ij}^n is element (i, j) in matrix P^n

- Recursive computation of state probabilities

- Thus,

$P^{(n)} = P^n$
State Probabilities – Stationary Distribution

- State probabilities (time-dependent)
 \[\pi_j^n = P\{X_n = j\}, \quad \pi^n = (\pi_0^n, \pi_1^n, \ldots) \]

 \[P\{X_n = j\} = \sum_{i=0}^{\infty} P\{X_{n-1} = i\}P\{X_n = j \mid X_{n-1} = i\} \implies \pi^n_j = \sum_{i=0}^{\infty} \pi_i^{n-1} P_{ij} \]

 In matrix form:
 \[\pi^n = \pi^{n-1} P = \pi^{n-2} P^2 = \ldots = \pi^0 P^n \]

- If time-dependent distribution converges to a limit
 \[\pi = \lim_{n \to \infty} \pi^n \quad \pi = \pi P \]

 \(\pi \) is called the \textit{stationary distribution} (or \textit{steady state distribution})
 - existence depends on the \textit{structure of Markov chain}
Irreducibility of DTMC

- States i and j communicate:
 \[\exists n, m : P_{ij}^n > 0, P_{ji}^m > 0 \]

- Binary relation \(\leftrightarrow \) is an *equivalence* (i.e., reflexive, symmetric, transitive); the equivalence classes induced by \(\leftrightarrow \) are called *communicating classes*.

- Irreducible Markov chain: all states communicate (and thus form a single communicating class).
First hit probabilities $f_{i,j}^{(n)}$

- Probability of first hitting/visiting state j at time n, when starting in state i at time 0
 \[f_{i,j}^{(n)} = \Pr(X_1 \neq j, X_2 \neq j, \ldots, X_{n-1} \neq j, X_n = j \mid X_0 = i) \]
 \[f_{i,i}^{(0)} = 1, \text{ and for } j = i, f_{i,j}^{(0)} = 0 \]

- T_{ij}: the first passage time from i to j

- Probability of visiting state j in finite time if starting in state i
 \[f_{i,j} = \sum_{n=1}^{\infty} f_{i,j}^{(n)} \]
Aperiodicity of DTMC

- Period d_i of a state i:

 $$d_i = \gcd\{n : f_{i,j}^{(n)} > 0\} = \gcd\{n : p_{i,j}^{(n)} > 0\}$$

 - Theorem: all the states in a communicating class of a DTMC have the same period.

- State i is *aperiodic* if $d_i = 1$
 - Special case: if $p_{j,j} > 0$, then j is aperiodic (why?)

- Aperiodic Markov chain: none of the states is periodic
Limit Theorems

Theorem 0a: Irreducible aperiodic Markov chain

- For every state \(j \), the following limit

\[
\pi_j = \lim_{n \to \infty} P\{X_n = j \mid X_0 = i\}, \quad i = 0, 1, 2, \ldots
\]

exists and is independent of initial state \(i \)

- \(N_j(k) \): number of visits to state \(j \) up to time \(k \)

\[
P\left\{ \pi_j = \lim_{k \to \infty} \frac{N_j(k)}{k} \mid X_0 = i \right\} = 1
\]

\[\Rightarrow \pi_j: \text{ frequency the process visits state } j\]
Existence of Stationary Distribution (or steady state distribution)

Theorem 0b: Irreducible aperiodic Markov chain. There are two possibilities for scalars:

\[
\pi_j = \lim_{n \to \infty} P\{X_n = j \mid X_0 = i\} = \lim_{n \to \infty} P_{ij}^n
\]

1. \(\pi_j = 0\), for all states \(j\) \(\Rightarrow\) No stationary distribution

2. \(\pi_j > 0\), for all states \(j\) \(\Rightarrow\) \(\pi\) is the *unique* stationary distribution

Remark: If the number of states is finite, case 2 is the only possibility
Positivity

- A state \(j \) is *positive recurrent* if the process returns to state \(j \) “infinitely often”

- Formal definition:
 - A state \(j \) is *absorbing* if \(p_{j,j} = 1 \)
 - A state \(j \) is *transient* if \(f_{j,j} < 1 \)
 - A state \(j \) is *recurrent* (or *persistent*) if \(f_{j,j} = 1 \)
 - A recurrent state \(j \) is *positive* if \(\sum_{n=1}^{\infty} n f_{j,j} < \infty \); otherwise, it is *null*

- Note: “positive recurrent => irreducible” always hold, but “irreducible => positive recurrent” is guaranteed to hold only for finite MC
Example 0: a MC with countably infinite state space

- All states are positive recurrent if $p < \frac{1}{2}$, null recurrent if $p = \frac{1}{2}$, and transient if $p > \frac{1}{2}$
Theorem D.2: for each communicating class of a DTMC \(\{X_n\} \), exactly one of the following holds:

- All the states in the class are transient
- All the states in the class are null recurrent
- All the states in the class are positive (recurrent)

Thus, an irreducible DTMC is positive recurrent if any one of its state is positive
Deciding positivity

- A communicating class C is *closed* if

 $$\forall i, j : i \in C, j \notin C \Rightarrow p_{i,j} = 0$$

 Otherwise, the class is said to be *open*

- **Theorem D.3**: given a DTMC,
 - An open communicating class is transient
 - A *closed finite* communication class is positive recurrent
What about *infinite* closed communicating classes?

- **Theorem D.4**: an irreducible DTMC on state space S is positive recurrent iff.

 $$ \exists \text{ positive prob. distribution } \pi \text{ on } S \text{ s.t. } \pi = \pi P. $$

where P is the state transition matrix.

- Note: if such probability π exists, it is unique and is called an *invariant* probability vector for the DTMC

- If π is invariant, and if $\Pr(X_0 = i) = \pi_i$, then the DTMC so obtained is a *stationary* random process
Alternative approach: drift analysis of a suitable *Lyapunov function* $f(.)$

Theorem D.7: an irreducible DTMC X_n, $n \geq 0$, is *recurrent* if

\exists nonnegative function $f(j)$, $j \in S$ (state space), s.t. $f(j) \to \infty$ as $j \to \infty$, and a *finite* set $A \subset S$ s.t.

$$\forall i \notin A : E(f(X_{n+1}) \mid X_n = i) \leq f(i)$$
Theorem D.8: an irreducible DTMC X_n, $n \geq 0$, is **transient** if

\[\exists \text{ nonnegative function } f(j), j \in S, \text{ and a set } A \subset S \text{ s.t.} \]

\[\forall i \notin A : E(f(X_{n+1}) \mid X_n = i) \leq f(i) \]

and $\exists j \notin A$ s.t.

\[\forall k \in A : f(j) < f(k) \]
Theorem D.9: an irreducible DTMC X_n, $n \geq 0$, is **positive recurrent** if

\exists nonnegative function $f(j)$, $j \in S$, and a **finite** set $A \subset S$ s.t.

$$\forall i \notin A : E(f(X_{n+1}) \mid X_n = i) \leq f(i) - \varepsilon$$

for some $\varepsilon > 0$, and

$$\forall k \in A : E(f(X_{n+1}) \mid X_n = k) \leq B$$

for some finite number B.

![Diagram of set A and state i]
Theorem D.10: an irreducible DTMC X_n, $n \geq 0$, on $i \in \{0,1,2,\ldots\}$ is *not positive recurrent* if \exists finite values $K > 0$ and $B > 0$ s.t.

$$\forall i \geq 0: E(X_{n+1} \mid X_n = i) < \infty, \text{ and}$$

$$\forall i \geq K: E(X_{n+1} \mid X_n = i) \geq i, \text{ and } E((X_n - X_{n+1})^+ \mid X_n = i) \leq B$$

- In the context of Theorems D.7-9, Theorem D.10 is for Lyapunov function $f(j) = j$

- This theorem is useful in establishing instability results

- E.g., for a queue with finite # of servers where arrival rate is strictly greater than the overall service rate, $X_n = \text{queue occupancy}$
Exercise

- Use Theorems D.7-9 to prove the results for Example 0 shown earlier
Convergence of positive recurrent DTMC

- Given an \textit{irreducible, positive} DTMC with period \(d \) and state space \(S \),
 - \(\forall j \in S, \lim_{n \to \infty} p_{j,j}^{nd} = d\pi_j \)
 - If the DTMC is aperiodic (i.e., \(d=1 \)),
 \[\forall i, j \in S, \lim_{n \to \infty} p_{i,j}^n = \pi_j \]
Ergodicity

- A state is *ergodic* if it is aperiodic and positive recurrent
- A MC is ergodic if every state is ergodic
- Ergodic chains have a unique stationary distribution

\[\pi_j = \frac{1}{E(T_{jj})}, \quad j = 0, 1, 2, \ldots \]

where \(T_{ij} \) is the first passage time from i to j

- Note: Ergodicity \(\Rightarrow \) Time Averages = Stochastic Averages
Markov chain

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Calculation of Stationary Distribution

A. Finite number of states
- Solve explicitly the system of equations
 \[\pi_j = \sum_{i=0}^{m} \pi_i P_{ij}, \quad j = 0,1,...,m \]
 \[\sum_{i=0}^{m} \pi_i = 1 \]
- Or, numerically from \(P^n \) which converges to a matrix with rows equal to \(\pi \)
 - Suitable for a small number of states

B. Infinite number of states
- Cannot apply previous methods to problem of infinite dimension
- Guess a solution to recurrence:
 \[\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \quad j = 0,1,..., \]
 \[\sum_{i=0}^{\infty} \pi_i = 1 \]
 (detailed) balance equations can help the guess
Example: Finite Markov Chain

- Absent-minded professor uses two umbrellas when commuting between home and office.
- If it rains and an umbrella is available at her location, she takes it. If it does not rain, she always forgets to take an umbrella.
- Let p be the probability of rain each time she commutes.

Q: What is the probability that she gets wet on any given day?

- Markov chain formulation

- i is the number of umbrellas available at her current location

- Transition matrix

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1-p & p \\ 1-p & p & 0 \end{bmatrix}$$
Example: Finite Markov Chain

\[P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1-p & p \\ 1-p & p & 0 \end{bmatrix} \]

\[\begin{cases} \pi = \pi P \\ \sum_i \pi_i = 1 \end{cases} \iff \begin{cases} \pi_0 = (1-p)\pi_2 \\ \pi_1 = (1-p)\pi_1 + p\pi_2 \\ \pi_2 = \pi_0 + p\pi_1 \\ \pi_0 + \pi_1 + \pi_2 = 1 \end{cases} \iff \begin{cases} \pi_0 = \frac{1-p}{3-p} \\ \pi_1 = \frac{1}{3-p} \\ \pi_2 = \frac{1}{3-p} \end{cases} \]

\[P\{\text{gets wet}\} = \pi_0 p = p \frac{1-p}{3-p} \]
Example: Finite Markov Chain

- Taking $p = 0.1$:

$$\pi = \left(\frac{1-p}{3-p}, \frac{1}{3-p}, \frac{1}{3-p} \right) = (0.310, 0.345, 0.345)$$

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0.9 & 0.1 \\ 0.9 & 0.1 & 0 \end{bmatrix}$$

- Numerically determine limit of P^n

$$\lim_{n \to \infty} P^n = \begin{bmatrix} 0.310 & 0.345 & 0.345 \\ 0.310 & 0.345 & 0.345 \\ 0.310 & 0.345 & 0.345 \end{bmatrix} \quad (n \approx 150)$$

- Effectiveness depends on structure of P
Markov chain

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Global Balance Equations

- Global Balance Equations (GBE)

\[\pi_j \sum_{i=0}^{\infty} P_{ji} = \sum_{i=0}^{\infty} \pi_i P_{ij} \iff \pi_j \sum_{i \neq j} P_{ji} = \sum_{i \neq j} \pi_i P_{ij}, \quad j \geq 0 \]

- \(\pi_j P_{ji} \) is the frequency of transitions from \(j \) to \(i \)

\[
\begin{pmatrix}
\text{Frequency of transitions out of } j \\
\end{pmatrix} = \begin{pmatrix}
\text{Frequency of transitions into } j \\
\end{pmatrix}
\]

- Intuition: 1) \(j \) visited infinitely often; 2) for each transition out of \(j \) there must be a subsequent transition into \(j \) with probability 1
Global Balance Equations (contd.)

- Alternative Form of GBE

\[
\sum_{j \in S} \pi_j \sum_{i \in S} P_{ji} = \sum_{i \in S} \pi_i \sum_{j \in S} P_{ij}, \quad S \subseteq \{0, 1, 2, \ldots\}
\]

- If a probability distribution satisfies the GBE, then it is the unique stationary distribution of the Markov chain

- Finding the stationary distribution:
 - Guess distribution from properties of the system
 - Verify that it satisfies the GBE
 - Special structure of the Markov chain simplifies task
Global Balance Equations – Proof

First form:

\[\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij} \quad \text{and} \quad \sum_{i=0}^{\infty} P_{ji} = 1 \quad \Rightarrow \]

\[\pi_j \sum_{i=0}^{\infty} P_{ji} = \sum_{i=0}^{\infty} \pi_i P_{ij} \quad \iff \quad \pi_j \sum_{i \neq j} P_{ji} = \sum_{i \neq j} \pi_i P_{ij} \]

Second form:

\[\pi_j \sum_{i=0}^{\infty} P_{ji} = \sum_{i=0}^{\infty} \pi_i P_{ij} \quad \Rightarrow \quad \sum_{j \in S} \pi_j \left(\sum_{i \in S} P_{ji} + \sum_{i \notin S} P_{ji} \right) = \sum_{j \in S} \left(\sum_{i \in S} \pi_i P_{ij} + \sum_{i \notin S} \pi_i P_{ij} \right) \quad \Rightarrow \]

\[\sum_{j \in S} \pi_j \sum_{i \notin S} P_{ji} = \sum_{i \notin S} \pi_i \sum_{j \in S} P_{ij} \]
Markov chain

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Generalized Markov Chains

- Markov chain on a set of states \{0,1,...\}, that whenever enters state \(i\)
 - The next state that will be entered is \(j\) with probability \(P_{ij}\)
 - Given that the next state entered will be \(j\), the time it spends at state \(i\) until the transition occurs is a RV with distribution \(F_{ij}\)

- \{\(Z(t): t \geq 0\}\} describing the state of the chain at time \(t\): Generalized Markov chain, or Semi-Markov process
 - Does GMC have the Markov property?
 - Future depends on 1) the present state, and 2) the length of time the process has spent in this state
Generalized Markov Chains (contd.)

- \(T_i \): time process spends at state \(i \), before making a transition – *holding time*

- Probability distribution function of \(T_i \)
 \[
 H_i(t) = P\{T_i \leq t\} = \sum_{j=0}^{\infty} P\{T_i \leq t \mid \text{next state } j\}P_{ij} = \sum_{j=0}^{\infty} F_j(t)P_{ij}
 \]
 \[
 E[T_i] = \int_{0}^{\infty} t \, dH_i(t)
 \]

- \(T_{ii} \): time between successive transitions to \(i \)

- \(X_n \) is the \(n^{th} \) state visited. \(\{X_n: n=0,1,\ldots\} \)
 - Is a Markov chain: *embedded* Markov chain
 - Has transition probabilities \(P_{ij} \)

- Semi-Markov process *irreducible*: if its embedded Markov chain is irreducible
Limit Theorems

Given an irreducible semi-Markov process w/ $E[T_{ii}] < \infty$

- For any state j, the following limit
 \[p_j = \lim_{t \to \infty} P\{Z(t) = j \mid Z(0) = i\}, \quad i = 0, 1, 2, \ldots \]
 exists and is independent of the initial state.
 \[p_j = \frac{E[T_j]}{E[T_{jj}]} \]

- $T_j(t)$: time spent at state j up to time t
 \[P \left\{ p_j = \lim_{t \to \infty} \frac{T_j(t)}{t} \mid Z(0) = i \right\} = 1 \]
 - p_j is equal to the proportion of time spent at state j
Occupyancy Distribution

Given an irreducible semi-Markov process where $E[T_{ii}] < \infty$, and the embedded Markov chain is ergodic w/ stationary distribution π

$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \ j \geq 0; \ \sum_{i=0}^{\infty} \pi_i = 1$$

then, with probability 1, the occupancy distribution of the semi-Markov process

$$p_j = \frac{\pi_j E[T_j]}{\sum_{i} \pi_i E[T_i]}, \ j = 0, 1, ...$$

- π_j: proportion of transitions into state j
- $E[T_j]$: mean time spent at j
- $\pi_j E[T_j]$: Probability of being at j is proportional to $\pi_j E[T_j]$
Markov chain

- Markov Chain
- Discrete-Time Markov Chains
- Calculating Stationary Distribution
- Global Balance Equations
- Generalized Markov Chains
- Continuous-Time Markov Chains
Continuous-Time Markov Chains (def.?)

Continuous-time process \(\{X(t): t \geq 0\} \) taking values in \(\{0,1,2,...\} \).

Whenever it enters state \(i \):

- Time it spends at state \(i \) is \textit{exponentially distributed} with parameter \(\alpha_i \).
- When it leaves state \(i \), it enters state \(j \) with probability \(P_{ij} \), where \(\sum_{j \neq i} P_{ij} = 1 \).

Continuous-time Markov chain is a semi-Markov process with

\[
F_{i,j}(t) = 1 - e^{-\alpha_i t}, \quad i, j = 0,1,2,...
\]

Exponential holding time \(\Rightarrow \) a continuous-time Markov chain has the Markov property.
CTMC: alternative definition

- \{X(t)\} on state space \(S \) is a *continuous time Markov chain* if

\[
\forall t, s \geq 0, \forall j \in S, \quad \Pr(X(t + s) = j \mid X(u), u \leq s) = \Pr(X(t + s) = j \mid X(s))
\]

- Assume time homogeneity, we write

\[
p_{i,j}(t) := \Pr(X(t + s) = j \mid X(s) = i)
\]

- For an arbitrary time \(t \), time to next state transition \(W(t) \)

\[
W(t) = \inf\{s > 0 : X(t + s) \neq X(t)\}
\]
Theorem D.11: for a CTMC \(\{X(t)\} \),

\[
\forall i \in S, \forall t, u \geq 0 : \Pr(W(t) > u | X(t) = i) = e^{-\alpha_i u}
\]

for some constant \(\alpha_i \geq 0 \).

- Sojourn time at a state \(i \) is exponentially distributed with parameter \(\alpha_i \) that only depend on \(i \)
- A state \(i \in S \) is called absorbing if \(\alpha_i = 0 \).
Jump chain/embedded process

- Let $T_0=0$, T_1, T_2, ... be the successive jump instants (i.e., instants when state changes) of a CTMC, and let $X_n=X(T_n)$.

- Sequence T_n, $n \geq 0$, is called a sequence of *embedded instants*, and X_n, $n \geq 0$, is called a jump chain or an *embedded process*.
Theorem D.12: given a CTMC \(\{X(t)\} \) with jump instants \(T_n, n \geq 0 \), and jump chain \(X_n, n \geq 0 \), for \(i_0, i_1, \ldots, i_{n-1}, i, j \in S, t_0, t_1, \ldots, t_n, u \geq 0 \),

\[
\Pr\left\{ X_{n+1} = j, T_{n+1} - T_n > u \mid X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i, \right. \\
\left. T_0 = t_0, \ldots, T_n = t_n \right\} = p_{i,j} e^{-\alpha_i u}
\]

where \(p_{i,j} \geq 0, \sum_{j \in S} p_{i,j} = 1 \), and if \(\alpha_i > 0 \), then \(p_{i,i} = 0 \)

- Sojourn time at a state \(i \) and the next state entered are independent, and only depend on state \(i \)
- Thus, the embedded process is a DTMC with transition probability \(p_{i,j} \)
A CTMC is irreducible and regular, if

- Its embedded Markov chain is irreducible, and
- Number of transitions in a finite time interval is finite with probability 1

Theorem D.13: \{X(t)\} is a CTMC with embedded DTMC \{X_n\} and sojourn time parameters \(\alpha_i \in S\), then

- If \(\exists v\) s.t. \(\alpha_i \leq v\) for all \(i\), then \{X(t)\} is regular
- If \{X_n\} is recurrent, then \{X(t)\} is regular
CTMC: transience & recurrence

- Let $\tau_{j,j} =$ time until the process first returns to j after leaving it.

- A state j in a CTMC is *recurrent* if $\Pr(\tau_{j,j}<\infty)=1$; otherwise, j is *transient*.

 A recurrent state j is *positive* if $E(\tau_{j,j})< \infty$; otherwise, it is *null*.

- Same as in DTMC, the states of an irreducible CTMC are either all transient, all positive, or all null.
A state j is *recurrent* in CTMC iff. it is recurrent in the embedded DTMC;

An irreducible CTMC is *recurrent iff*. the embedded DTMC is recurrent.

Similar results doest NOT hold for positivity of CTMC states
Transition rate matrix Q

- For $i, j \in S$, $i \neq j$, define $q_{i,j} = \alpha_i p_{i,j}$; can be interpreted as, conditional on being at state i, the rate of leaving i to enter j
- For $i \in S$, $q_{i,i} = -\alpha_i$
 - Thus, the sum of each row of Q is 0

Theorem D.14: an irreducible regular CTMC is *positive* iff. \exists positive prob. vector π s.t. $\pi Q = 0$ and $\sum_{i \in S} \pi_i = 1$. When such a π exists, it is unique.

- Note: the j-th equation is $\sum_{i \in S, i \neq j} \pi_i q_{i,j} = \pi_j \alpha_j$, meaning the unconditional rate of entering j equals that of leaving j
If the positive prob. vector π exists,

- it is also a stationary prob. vector; that is, if $\Pr(X(0)=i) = \pi_i$, then $\Pr(X(t)=i) = \pi_i$
- \[\pi_i = \frac{1/\alpha_i}{\tau_{i,i}} \]
- \[\lim_{t \to \infty} p_{i,j}(t) = \pi_j \]
 - No notion of periodicity for CTMC
Example

- M/M/1 queue
Basic Queueing Model

- A queue models any service station with:
 - One or multiple servers
 - A waiting area or buffer

- Customers arrive to receive service

- A customer that upon arrival does not find a free server waits in the buffer
Characteristics of a Queue

- Number of servers m: one, multiple, infinite
- Buffer size b
- Service discipline (scheduling)
 - FCFS, LCFS, Processor Sharing (PS), etc
- Arrival process
- Service statistics
Arrival Process

- τ_n: interarrival time between customers n and $n+1$
- τ_n is a random variable
- $\{\tau_n, n \geq 1\}$ is a stochastic process
 - Interarrival times are identically distributed and have a common mean
 $E[\tau_n] = E[\tau] = 1/\lambda$, where λ is called the \textit{arrival rate}
Service-Time Process

- s_n: service time of customer n at the server

- $\{s_n, \ n \geq 1\}$ is a stochastic process
 - Service times are identically distributed with common mean
 \[
 E[s_n] = E[s] = \mu, \text{ where } \mu \text{ is called the service rate}
 \]

For packets, are the service times really random?
Queue Descriptors

- Generic descriptor: A/S/m/k
 - A denotes the arrival process
 - For Poisson arrivals we use M (for Markovian)
 - S denotes the service-time distribution
 - M: exponential distribution
 - D: deterministic service times
 - G: general distribution
 - m is the number of servers
 - k is the max number of customers allowed in the system – either in the buffer or in service
 - k is omitted when the buffer size is infinite
Queue Descriptors: Examples

- M/M/1: Poisson arrivals, exponentially distributed service times, one server, infinite buffer
- M/M/m: same as previous with m servers
- M/M/m/m: Poisson arrivals, exponentially distributed service times, m server, no buffering
- M/G/1: Poisson arrivals, identically distributed service times follows a general distribution, one server, infinite buffer
- */D/∞: A constant delay system
Example: M/M/1 Queue

- Arrival process: Poisson with rate λ
- Service times: iid, exponential with parameter μ
- Service times and interarrival times: independent
- Single server
- Infinite waiting room
- $X(t)$: Number of customers in system at time t (state)
Exponential Random Variables

- X: exponential RV with parameter λ
- Y: exponential RV with parameter μ
- X, Y: independent

Then:

1. $\min\{X, Y\}$: exponential RV with parameter $\lambda + \mu$
2. $P\{X < Y\} = \lambda/((\lambda + \mu))$

Proof:

$$P\{\min\{X, Y\} > t\} = P\{X > t, Y > t\} = P\{X > t\}P\{Y > t\} = e^{-\lambda t}e^{-\mu t} = e^{-(\lambda + \mu)t} \Rightarrow P\{\min\{X, Y\} \leq t\} = 1 - e^{-(\lambda + \mu)t}$$

$$P\{X < Y\} = \int_0^\infty \int_0^y f_{XY}(x, y) \, dx \, dy = \int_0^\infty \int_0^y \lambda e^{-\lambda x} \cdot \mu e^{-\mu y} \, dx \, dy = \int_0^\infty \mu e^{-\mu y} \int_0^y \lambda e^{-\lambda x} \, dx \, dy = \int_0^\infty \mu e^{-\mu y} (1 - e^{-\lambda y}) \, dy = \int_0^\infty \mu e^{-\mu y} dy - \frac{\mu}{\lambda + \mu} \int_0^\infty (\lambda + \mu)e^{-(\lambda + \mu) y} dy = 1 - \frac{\mu}{\lambda + \mu} = \frac{\lambda}{\lambda + \mu}$$
M/M/1 Queue: Markov Chain Formulation

- Jumps of \(\{X(t): t \geq 0\} \) triggered by arrivals and departures
 - \(\{X(t): t \geq 0\} \) can jump only between neighboring states

Assume process at time \(t \) is in state \(i: N(t) = i \geq 1 \)

- \(X_i \): time until the next arrival – exponential with parameter \(\lambda \)
- \(Y_i \): time until the next departure – exponential with parameter \(\mu \)
- \(T_i = \min\{X_i, Y_i\} \): time process spends at state \(i \)
- \(T_i \): exponential with parameter \(\alpha_i = \lambda + \mu \)
\[P_{i,i+1} = P\{X_i < Y_i\} = \frac{\lambda}{\lambda + \mu}, \quad P_{i,i-1} = P\{Y_i < X_i\} = \frac{\mu}{\lambda + \mu} \]

\[P_{01} = 1, \text{ and } T_0 \text{ is exponential with parameter } \lambda \]

\[\{N(t); \quad t \geq 0\} \text{ is a CTMC with} \]

\[q_{i,i+1} = \alpha_i, \quad p_{i,i+1} = \lambda, \quad i \geq 0 \]

\[q_{i,i-1} = \alpha_i, \quad p_{i,i-1} = \mu, \quad i \geq 1 \]

\[q_{0,0} = -\lambda \]

\[q_{i,j} = 0, \quad |i - j| > 1 \]
\[\pi Q = 0 \] has a positive, summable (to 1) solution iff. \(\lambda < \mu \)

If \(\lambda < \mu \),

- \(\text{Prob\{queue is non-empty\}} = 1 - \rho \), where \(\rho = \frac{\lambda}{\mu} \)
- \(\pi_i = (1 - \rho)\rho^i \), \(i = 0, 1, 2, \ldots \), is the stationary distribution
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Renewal process

- Given a sequence of mutually independent r.v.’s X_k, $k=1,2,3,...$, s.t. X_k, $k>=2$ are i.i.d., and X_1 can have a possibly different distribution, we define the *renewal instants*, Z_k, $k>=1$, as $Z_k = \sum_{i=1}^{k} X_i$.

- The # of renewals in time $(0, t]$ is called a *renewal process* $M(t)$.

- Example: a CTMC $B(t)$ with $B(0) = i$, and let’s consider visits to state j
 - X_1: time to first visit j
 - X_k, $k>=2$: times between subsequent visits to j
 - $M(t)$: # of visits to j up to time t
Renewal reward process

- To associate a reward with each renewal interval

- Formally:
 - Given a renewal process with lifetimes X_k, $k \geq 1$, associate X_k with a reward R_k s.t. R_k, $k \geq 1$, are mutually independent; R_k can depend on X_k

- Example: in the CTMC $B(t)$, define R_k as the time spent at a specific state i during the k-th renewal interval
- Let $C(t)$ as the total reward accrued until time t, then the reward rate is $\lim_{t \to \infty} \frac{C(t)}{t}$.

- [Renewal Reward Theorem]: for $E(|R_k|)<\infty$ and $E(|X_k|)<\infty$, the following hold:
 - With probability 1, $\lim_{t \to \infty} \frac{C(t)}{t} = \frac{E(R)}{E(X)}$
 - $\lim_{t \to \infty} \frac{E(C(t))}{t} = \frac{E(R)}{E(X)}$

- Note: in general, $E(R)/E(X) \neq E(R/X)$
Markov renewal process (MRP)

- Let X_n, $n \geq 0$, be a random sequence with state space S, and let $T_0 \leq T_1 \leq T_2 \ldots$ be nondecreasing sequence of random times.

- The random sequence (X_n, T_n), $n \geq 0$, is a Markov renewal process (MRP) if for i_0, i_1, ..., i_{n-1}, i, $j \in S$, $t_0 \leq t_1 \leq \ldots \leq t_n$, $u \geq 0$,

$$
\Pr \left\{ X_{n+1} = j, T_{n+1} - T_n \leq u \mid X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i, T_0 = t_0, \ldots, T_n = t_n \right\} = \\
\Pr \{ X_{n+1} = j, T_{n+1} - T_n \leq u \mid X_n = i \}
$$

- MRP is a generalization of CTMC: 1) sojourn time may not be independent of the next state, and 2) sojourn time may not be exponentially distributed.
Let $p_{i,j} = \lim_{u \to \infty} \Pr\{X_{n+1} = j, T_{n+1} - T_n \leq u \mid X_n = i\}$, assuming the limit does not depend on n;

Then, X_n, $n \geq 0$, is a DTMC on S with transition prob. $p_{i,j}$, $i,j \in S$.

Distribution of sojourn time given the current and next states:

$H_{i,j}(u) = \Pr\{T_{n+1} - T_n \leq u \mid X_n = i, X_{n+1} = j\}$

Theorem D.16:

$\Pr\{T_1 - T_0 \leq u_1, T_2 - T_1 \leq u_2, ..., T_n - T_{n-1} \leq u_n\} = \prod_{i=1}^{n} H_{i-1,i}(u_i)$

- Independent sojourn times given the sequence of states at the end points
Distribution of sojourn time:

\[H_i(u) = \sum_{j \in S} p_{i,j} H_{i,j}(u) \]

Mean sojourn time at state i:

\[\sigma_i = \sum_{j \in S} p_{i,j} \sigma_{i,j}, \text{ where } \sigma_{i,j} \text{ is the mean of } H_{i,j}(u) \]
• Associate a reward R_k with the interval (T_{k-1}, T_k), for $k \geq 1$, s.t. R_k is independent of anything else given (X_{k-1}, X_k) and $(T_k - T_{k-1})$

• Let r_j be the expected reward in an interval that begins in state j

• Suppose X_k, $k \geq 0$, is a positive recurrent DTMC on S with stationary prob. Vector π. Then under the conditions that $\sum_{j \in S} \pi_j \sigma_j < \infty$,

$$\lim_{t \to \infty} \frac{C(t)}{t} = \frac{\sum_{j \in S} \pi_j r_j}{\sum_{j \in S} \pi_j \sigma_j}$$

, with probability 1
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Excess distribution, or excess-life/residual-life distribution

Given a nonnegative r.v. \(X \) with distribution \(F(.) \) and finite mean \(\text{EX} = \int_0^\infty (1 - F(u)) \, du \), the excess distribution is defined as

\[
F_e(y) = \frac{\int_0^\infty (1 - F(u)) \, du}{\text{EX}}
\]

Can be interpreted as the distribution function of the residual life seen by a random observer of a renewal process with i.i.d. lifetime \(X \)
Interpretation of $F_e(y)$

- Consider the renewal process with i.i.d. lifetimes X_k, $k \geq 1$, with distribution $F(.)$; define $Y(t)$ as the *residual life* or *excess life* at a random time t, i.e., the time until the first renewal in (t, ∞)

- Consider

 $\lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} I_{\{Y(u) \leq y\}} \, du$: long-run fraction of time that the excess life is $\leq y$

 $\lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \Pr(Y(u) \leq y) \, du$: time average prob. that the excess life is $\leq y$

- Then, by Theorem D.15,

 $\lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} I_{\{Y(u) \leq y\}} \, du \xrightarrow{w.p.1} F_e(y)$

 $\lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \Pr(Y(u) \leq y) \, du \to F_e(y)$

How?
Proof: define reward function \(R_k = \min\{X_k, y\} \), then

\[
C(t) = \int_0^t I_{[Y(u) \leq y]} \, du
\]

\[
E(R_k) = \int_0^\infty u f_{R_k}(u) \, du = \int_0^y u f_{X_k}(u) \, du + y(1 - F(y)) = \int_0^y 1 - F(u) \, du
\]

\[
E(C(t)) = \int_0^t \Pr(Y(u) \leq y) \, du
\]

...
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Phase type distribution

- For a CTMC \(X(t) \) on state space \(\{1, 2, \ldots, M, a\} \) s.t. states \(\{1, 2, \ldots, M\} \) are all transient and \(\alpha \) is absorbing, the transition rate matrix of \(X(t) \) is of the form
 \[
 \begin{bmatrix}
 Q & q \\
 0 & 0
 \end{bmatrix}
 \]
 where \(Q \) is an \(M \times M \) matrix, \(q \) is a column vector of size \(M \);
 \(\exists \) probability vector \(\alpha \) of size \(M \) (i.e., \(0 \leq \alpha_j \leq 1, \sum_{j=1}^{M} \alpha_j = 1 \)) s.t., the CTMC starts in state \(j \) with prob. \(\alpha_j \), and then evolves to absorption state \(a \)

- Then, the distribution of the time until absorption is said to be phase type with parameters \((\alpha, Q, q)\)
 - When the process is at state \(j \), it is said to be at phase \(j \)
Example

For

\[\alpha = (1,0,0,0), \quad Q = \begin{bmatrix}
-\mu & \mu & 0 & 0 \\
0 & -\mu & \mu & 0 \\
0 & 0 & -\mu & \mu \\
0 & 0 & 0 & -\mu
\end{bmatrix} \], \quad q = (0,0,0,\mu)^T \]

The phase type distribution is an Erlang distribution of order 4, with each stage being exponentially distributed with mean \(1/\mu\).
Why phase-type distribution?

- Phase-type distribution can be used to approximate arbitrarily closely (in the sense of convergence in distribution) any distribution.
 - This fact may not always be useful for numerical approximation, due to the large # of phases required for good approximation.
 - But it is very useful for theoretical purposes:
 - We can often prove results using phase type distributions thanks to their simple structure; then
 - We can prove that the result holds for any distribution by considering a sequence of phase type distributions converging to the general distributions.
Overflow process of M/M/c/c system

- The sequence of times at which customers are denied service forms a renewal process, and the distribution of these times is phase type with

\[\alpha = (0, 0, ..., 0, 1), \quad Q = \begin{bmatrix}
-\lambda & \lambda & 0 & \ldots & 0 & 0 \\
\mu & -(\lambda + \mu) & \lambda & 0 & \ldots & 0 \\
0 & \mu & \ldots & \ldots & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \mu & -(\lambda + \mu) & \lambda \\
0 & 0 & 0 & 0 & \mu & -(\lambda + \mu)
\end{bmatrix} \]

\[q = (0, 0, ..., \lambda)^\top \]
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Poisson arrivals see time averages (PASTA)

Observations of a process $X(t)$ at *random* time points

vs.

Observations of a process $X(t)$ *over all time*
Motivating example

- Consider a stable D/D/1 queue where customers arrive periodically at intervals of length \(a \) and requires a service time \(b < a \). Let \(X(t) \) be the number of customers in the system at time \(t \).

- Then
 - Average # of customers over all time is
 \[
 \lim_{t \to \infty} \frac{1}{t} \int_0^t X(u) \, du = \frac{b}{a}
 \]
 - Now, observe \(x(t) \) at \(t_k = ka, k \geq 0 \) (i.e., what arrivals see on average)
 \[
 \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} X(t_k) = 0
 \]

 Point observations differ from average behaviors 😞
Formal characterization

- Let $X(t), t \geq 0$, be a random process, and B be a subset of the state space of $X(t)$; $A(t)$ be a Poisson arrival process with rate λ, and $t_k, k \geq 1$, be the arrival points

- Then

 \[V^B_A(t) = \frac{1}{A(t)} \sum_{k=1}^{A(t)} \int_0^t I_{\{X(u) \in B\}} \, du \]

 is the fraction of arrivals over $(0, t]$ that see the process $X(.)$ in B
- **Lack of anticipation assumption**: for all $t \geq 0$, $A(t+u)-A(t)$, $u \geq 0$, is independent of $X(s)$, $0 \leq s \leq t$
 - i.e., for all $t \geq 0$, future arrivals are independent of the past of $X(.)$
 - Note: the assumption holds for independent Poisson arrival processes

- **Theorem D.17**: under the lack of anticipation assumption,

$$V_B^B(t) \xrightarrow{w.p.1} \overline{V}_B \quad \text{iff.} \quad V_A^B(t) \xrightarrow{w.p.1} \overline{V}_B$$

 - i.e., time average and arrival average are the same
Bernoulli/Geometric arrivals see time averages (GASTA)

- For queueing processes that evolve at discrete times \(t_k = kT \), \(k = 0, 1, 2, \ldots \), let \(X_k \) denote the discrete time queue embedded at instants \(t_k \).

- Consider a Bernoulli arrival process of rate \(p \), i.e., at times \(t_{k+} \) an arrival occurs with prob. \(p \)
 - Also called a Geometric process since inter-arrival times are geometrically distributed.

- Due to lack of anticipation, results similar to PASTA holds for Bernoulli/geometric arrivals and can be called GASTA.
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Level crossing analysis (LCA)

- When direct derivation of stationary prob. distributions (via $\pi=\pi P$ or other means such as balance equations) is difficult, LCA may help obtain ancillary equations that provide some information about stationary distribution

- Given r.p. $X(t)$ on $[0, \infty)$ and a $x \geq 0$
 - Up-crossing rate $U_x(t)$: # of times that $X(.)$ crosses the “level” x from below
 - Down-crossing rate $D_x(t)$: # of times that $X(.)$ crosses the “level” x from above
- **Level crossing analysis** is based on the following facts

 - $|U_x(t) - D_x(t)| \leq 1$, and

 $$\lim_{t \to \infty} \frac{1}{t} U_x(t) = \lim_{t \to \infty} \frac{1}{t} D_x(t),$$

 if either limit exists

 - The above limits can usually be written in terms of the stationary distribution of the r.p.
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Some important queueing models

- M/G/c/c queue
- Processor sharing queue
- Symmetric queues
M/G/c/c queue

- Poisson arrivals with finite rate λ

- Service requirements are i.i.d. and generally distributed with distribution $F(.)$ and finite mean $1/\mu$
 - Service requirement is also called the *holding time*, since a customer “holds” a dedicated server for the entire duration of its service

- Each arriving customer is assigned to a free server if one exists; otherwise, the arriving customer is denied admission and it goes away

- Given an example of M/G/c/c queue?
- $X(t)$: # of customers in queue at time t

- Let $\rho = \lambda / \mu$
 - In M/G/c/c, ρ equals to the average # of new arrivals during the holding time of a customer (by Little’s Theorem)

- [Exercise D.3]: if $F(.)$ is an exponential distribution function, then $X(t)$ is a positive recurrent CTMC on state space $\{0, 1, \ldots, c\}$, with stationary distribution

$$\pi_n = \frac{\rho^n}{n!}$$

$$\sum_{j=0}^{c} \frac{\rho^j}{j!}$$
When $F(.)$ is not an exponential distribution function, $X(t)$ is not Markovian.

But $(X(t), Y_1(t),..., Y_{X(t)}(t))$ is a Markov process, where $Y_i(t)$ denotes the residual service requirement of the i-th customer in the system; and

$$
\Pr(X(t) = n, Y_1 \leq y_1, ..., Y_n \leq y_n) = \pi_n \prod_{i=1}^{n} F_e(y_i),
$$

where π_n is as in the case of exponential holding time,

$F_e(.)$ is the excess distribution of the holding time distribution $F(.)$.
Processor sharing queue: M/G/1 PS

- Poisson arrivals with finite rate λ
- Service requirements are i.i.d. and generally distributed with distribution $F(.)$ and finite mean $1/\mu$
- Overall service rate: 1 unit per second

(fair) processor sharing rule: when there n customers in system, the unfinished work on the i-th customer decreases at rate $1/n$
Let $\rho = \frac{\lambda}{\mu}$

$X(t)$ denotes the # of customers at time t

If $F(.)$ is for a exponential distribution, then $X(t)$ is a CTMC, and it is positive recurrent iff. < 1, in which case the stationary distribution of $X(t)$ is given by

$$\pi_n = (1 - \rho) \rho^n$$
When $F(.)$ is not an exponential distribution function, $X(t)$ is not Markovian.

But $(X(t), Y_1(t),..., Y_{X(t)}(t))$ is a Markov process, where $Y_i(t)$ denotes the residual service requirement of the i-th customer in the system; and if $\rho<1$

$$
\Pr(X(t) = n, Y_1 \leq y_1, ..., Y_n \leq y_n) = (1 - \rho)\rho^n \prod_{i=1}^{n} F_e(y_i),
$$

where $F_e(.)$ is the excess distribution of $F(.)$

Note: the stationary distribution of $X(t)$ in an $M/G/1$ PS queue is the same as that in an $M/M/1$ queue, and thus is insensitive to the distribution of $F(.)$ (except through its mean).
Sojourn times in M/G/1 PS

- Sojourn time W: amount of time that a customer stays in the system

- Since $\pi_n = (1 - \rho)\rho^n$, $E(x) = \rho/(1- \rho)$; then, by Little’s Theorem,

$$E(W) = \frac{E(S)}{1 - \rho}, \text{where } E(S) = \frac{1}{\mu} \text{ and is the mean service requirement}$$

Moreover, $E(W \mid S = s) = \frac{s}{1 - \rho}$
Symmetric queue

Consider the following queue:

- Customers of class $c, c \in C$, arrive in independent Poisson processes of rate λ_c
- Customers of class c have a phase type service requirement with parameter (α_c, Q_c) and mean $1/\mu_c$
- An arriving customer finding $(n-1)$ customers in the system joins in position l, $1 \leq l \leq n$, with prob. $\gamma(n, l)$
- When there are n customers in the queue, the overall service rate applied is $\nu(n)$; and a fraction $\delta(n, l)$ of the service effort is applied to the customer at position l
A system state:

A aforementioned queueing system is said to be a *symmetric queue* if the functions $\delta(., .)$ and $\gamma(., .)$ are such that $\delta(n, l) = \gamma(n, l)$

- Positioning implies priority
Examples

- M/PH/1 queue with last-come-first-serve preemptive resume (LCFS-PR) discipline
 - $\nu(n) = \text{constant } \nu$
 - $\gamma(n, 1) = 1$, and $\gamma(n, j) = 0$ for $j > 1$
 - $\delta(n, 1) = 1$, and $\delta(n, j) = 0$ for $j > 1$

- M/PH/1 processor sharing queue?
 - $\nu(n) = \text{constant } \nu$
 - $\gamma(n, l) = \delta(n, l) = 1/n$, for $1 \leq l \leq n$
M/PH/∞ queue?

- \(v(n) = n\nu \)
- \(\gamma(n, l) = \alpha(n, l) = 1/n, \text{ for } 1 \leq l \leq n \)
Stationary distribution

- Let \(\rho = \sum_{c \in C} \frac{\lambda_c}{\mu_c} \)

- **Theorem D.18**: the stationary distribution of the \# of customers in a symmetric queue is given by the prob. distribution of system state \(x \)

\[
\pi(x) = G \frac{\rho^{\|x\|}}{\nu(1)\nu(2)\ldots\nu(\|x\|)}
\]

where \(\|x\| = \# \) of customers at state \(x \), and

\(G \) is the normalization constant

- Note: the distribution is insensitive to the service requirement distributions (except for their mean \(1/\mu_c, c \in C \))
Outline

- Markov chains and some renewal theory
 - Markov chain
 - Renewal processes, renewal reward processes, Markov renewal processes
 - The excess distribution
 - Phase type distribution
 - PASTA
 - Level crossing analysis

- Some important queueing models

- Reversibility of Markov chains and Jackson Network
Time Reversibility and Burke’s Theorem

- Time-Reversal of Markov Chains
- Reversibility
- Truncating a Reversible Markov Chain
- Burke’s Theorem
- Queues in Tandem
Time Reversibility and Burke’s Theorem

- Time-Reversal of Markov Chains
- Reversibility
- Truncating a Reversible Markov Chain
- Burke’s Theorem
- Queues in Tandem
Time-Reversed Markov Chains

- \(\{X_n: n=0,1,...\} \) irreducible aperiodic Markov chain with transition probabilities \(P_{ij} \)

\[
\sum_{j=0}^{\infty} P_{ij} = 1, \quad i = 0,1,...
\]

- Unique stationary distribution \((\pi_j > 0) \) iff. GBE holds, i.e.,

\[
\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \quad j = 0,1, ...
\]

- Process in steady state:

\[
\Pr\{X_n = j\} = \pi_j = \lim_{n \to \infty} \Pr\{X_n = j | X_0 = i\}
\]

 - Starts at \(n=-\infty \), that is \(\{X_n: n = ...,-1,0,1,...\} \), or
 - Choose initial state according to the stationary distribution

- *How does \(\{X_n\} \) look "reversed" in time?*
Time-Reversed Markov Chains

Define $Y_n = X_{\tau-n}$, for arbitrary $\tau > 0$

$=> \{Y_n\}$ is the reversed process.

Proposition 1:
- $\{Y_n\}$ is a Markov chain with transition probabilities:
 \[P_{ij}^* = \frac{\pi_j}{\pi_i} P_{ji}, \quad i, j = 0, 1, 2, ... \]
- $\{Y_n\}$ has the same stationary distribution π_j with the forward chain $\{X_n\}$
 - The reversed chain corresponds to the same process, looked at in the reversed-time direction
Time-Reversed Markov Chains

Proof of Proposition 1:

\[P_{ij}^* = P\{Y_m = j \mid Y_{m-1} = i, Y_{m-2} = i_2, \ldots, Y_{m-k} = i_k \} \]
\[= P\{X_{\tau-m} = j \mid X_{\tau-m+1} = i, X_{\tau-m+2} = i_2, \ldots, X_{\tau-m+k} = i_k \} \]
\[= P\{X_n = j \mid X_{n+1} = i, X_{n+2} = i_2, \ldots, X_{n+k} = i_k \} \]
\[= \frac{P\{X_n = j, X_{n+1} = i, X_{n+2} = i_2, \ldots, X_{n+k} = i_k \}}{P\{X_{n+1} = i, X_{n+2} = i_2, \ldots, X_{n+k} = i_k \}} \]
\[= \frac{P\{X_{n+2} = i_2, \ldots, X_{n+k} = i_k \mid X_n = j, X_{n+1} = i\}P\{X_n = j, X_{n+1} = i\}}{P\{X_{n+2} = i_2, \ldots, X_{n+k} = i_k \mid X_{n+1} = i\}P\{X_{n+1} = i\}} \]
\[= \frac{P\{X_n = j, X_{n+1} = i\}}{P\{X_{n+1} = i\}} = P\{X_n = j \mid X_{n+1} = i\} = P\{Y_m = j \mid Y_{m-1} = i\} \]
\[= \frac{P\{X_{n+1} = i \mid X_n = j\}P\{X_n = j\}}{P\{X_{n+1} = i\}} = \frac{\pi_{ji}P_{ji}}{\pi_i} \]
\[\sum_{i=0}^{\infty} \pi_i P_{ij}^* = \sum_{i=0}^{\infty} \pi_i \frac{\pi_j P_{ji}}{\pi_i} = \pi_j \sum_{i=0}^{\infty} P_{ji} = \pi_j \]
Time Reversibility and Burke’s Theorem

- Time-Reversal of Markov Chains
- Reversibility
- Truncating a Reversible Markov Chain
- Burke’s Theorem
- Queues in Tandem
Reversibility

- Stochastic process \(\{X(t)\} \) is called \textit{reversible} if \((X(t_1), X(t_2), \ldots, X(t_n)) \) and \((X(\tau-t_1), X(\tau-t_2), \ldots, X(\tau-t_n)) \) have the same probability distribution, for all \(\tau, t_1, \ldots, t_n \)

- \textbf{Proposition D.1}: if \(\{X(t), t \in \mathbb{R}\} \) is stationary, then a time reversed process is also stationary

- \textbf{Proposition D.2}: a reversible process is stationary (and consequently any time reversal of a reversible process is stationary).
- Markov chain \(\{X_n\} \) is *reversible* if and only if the transition probabilities of forward and reversed chains are equal, i.e.,

\[
P_{ij} = P_{ji}^*
\]

- Detailed Balance Equations \(\leftrightarrow \) Reversibility

\[
\pi_i P_{ij} = \pi_j P_{ji}, \quad i, j = 0, 1, \ldots
\]
Reversibility – Discrete-Time Chains

Theorem 1: If there exists a set of positive numbers \(\{\pi_j\} \), that sum up to 1 and satisfy:

\[
\pi_i P_{ij} = \pi_j P_{ji}, \quad i, j = 0, 1, ...
\]

Then:

1. \(\{\pi_j\} \) is the unique stationary distribution
2. The Markov chain is reversible

Example: Discrete-time birth-death processes are reversible, since they satisfy the DBE
Example: Birth-Death Process

- One-dimensional Markov chain with transitions only between neighboring states: $P_{ij} = 0$, if $|i-j| > 1$

- Detailed Balance Equations (DBE)

$$\pi_n P_{n,n+1} = \pi_{n+1} P_{n+1,n} \quad n = 0, 1, ...$$

- Proof: GBE with $S = \{0, 1, ..., n\}$ give:

$$\sum_{j=0}^{n} \sum_{i=n+1}^{\infty} \pi_j P_{ji} = \sum_{j=0}^{n} \sum_{i=n+1}^{\infty} \pi_i P_{ij} \Rightarrow \pi_n P_{n,n+1} = \pi_{n+1} P_{n+1,n}$$
Theorem 2: Irreducible Markov chain with transition probabilities P_{ij}.

If there exist:

- A set of transition probabilities P_{ij}^*, with $\sum_j P_{ij}^* = 1$, $i \geq 0$, and
- A set of positive numbers $\{\pi_j\}$, that sum up to 1, such that

$$\pi_i P_{ij}^* = \pi_j P_{ji}, \quad i, j \geq 0$$

Then:

- P_{ij}^* are the transition probabilities of the reversed chain, and
- $\{\pi_j\}$ is the stationary distribution of the forward and the reversed chains

Remark: Used to find the stationary distribution, by guessing the transition probabilities of the reversed chain – even if the process is not reversible.
Continuous-Time Markov Chains

- \{X(t): -\infty < t < \infty\} irreducible aperiodic Markov chain with transition rates \(q_{ij}, i \neq j\)

- Unique stationary distribution \((p_i > 0)\) iff.

\[
p_j \sum_{i \neq j} q_{ji} = \sum_{i \neq j} p_i q_{ij}, \quad j = 0, 1, ...\]

- Process in steady state – e.g., started at \(t = -\infty\):

\[
\Pr\{X(t) = j\} = p_j = \lim_{t \to \infty} \Pr\{X(t) = j \mid X(0) = i\}\]

- If \(\{\pi_j\}\), is the stationary distribution of the embedded discrete-time chain:

\[
p_j = \frac{\pi_j / \nu_j}{\sum_i \pi_i / \nu_i}, \quad \nu_j \equiv \sum_{i \neq j} q_{ji}, \quad j = 0, 1, ...\]
Reversed Continuous-Time Markov Chains

- Reversed chain \(\{Y(t)\} \), with \(Y(t) = X(\tau + t) \), for arbitrary \(\tau > 0 \)

- **Proposition 2:**
 1. \(\{Y(t)\} \) is a continuous-time Markov chain with transition rates:
 \[
 q^*_ij = \frac{p_j q_{ji}}{p_i}, \quad i, j = 0, 1, ..., i \neq j
 \]
 2. \(\{Y(t)\} \) has the same stationary distribution \(\{p_j\} \) with the forward chain

- **Remark:** The transition rate out of state \(i \) in the reversed chain is equal to the transition rate out of state \(i \) in the forward chain

\[
\sum_{j \neq i} q^*_ij = \frac{\sum_{j \neq i} p_j q_{ji}}{p_i} = \frac{p_i \sum_{j \neq i} q_{ij}}{p_i} = \sum_{j \neq i} q_{ij} = \alpha_{i\tau}, \quad i = 0, 1, ...
\]
Reversibility – Continuous-Time Chains

- Markov chain \(\{X(t)\} \) is reversible iff. the transition rates of forward and reversed chains are equal \(q_{ij} = q_{ij}^* \), or equivalently

\[
p_i q_{ij} = p_j q_{ji}, \quad i, j = 0,1,..., i \neq j
\]

i.e., Detailed Balance Equations \(\leftrightarrow \) Reversibility

- **Theorem 3:** If there exists a set of positive numbers \(\{\rho_j\} \), that sum up to 1 and satisfy:

\[
p_i q_{ij} = p_j q_{ji}, \quad i, j = 0,1,..., i \neq j
\]

Then:

1. \(\{\rho_j\} \) is the unique stationary distribution
2. The Markov chain is reversible
Example: Birth-Death Process

- Transitions only between neighboring states

 \[
 q_{i,i+1} = \lambda_i, \quad q_{i,i-1} = \mu_i, \quad q_{ij} = 0, \quad |i - j| > 1
 \]

- Detailed Balance Equations

 \[
 \lambda_n p_n = \mu_{n+1} p_{n+1}, \quad n = 0, 1, \ldots
 \]

- Proof: GBE with \(S = \{0, 1, \ldots, n\} \) give:

 \[
 \sum_{j=0}^{n} \sum_{i=n+1}^{\infty} p_j q_{ji} = \sum_{j=0}^{n} \sum_{i=n+1}^{\infty} p_i q_{ij} \Rightarrow \lambda_n p_n = \mu_{n+1} p_{n+1}
 \]

- \(M/M/1, M/M/c, M/M/\infty \)
Reversed Continuous-Time Markov Chains (Revisited)

- **Theorem 4:** Irreducible continuous-time Markov chain with transition rates q_{ij}. If there exist:
 - A set of transition rates q_{ij}^*, with $\sum_{j \neq i} q_{ij}^* = \sum_{j \neq i} q_{ji}$, $i \geq 0$, and
 - A set of positive numbers $\{p_j\}$, that sum up to 1, such that
 $$p_i q_{ij}^* = p_j q_{ji}, \quad i, j \geq 0, i \neq j$$

Then:
- q_{ij}^* are the transition rates of the reversed chain, and
- $\{p_j\}$ is the stationary distribution of the forward and the reversed chains

- **Remark:** Used to find the stationary distribution, by guessing the transition probabilities of the reversed chain – even if the process is not reversible
Reversibility: Trees

Theorem 5:

- Irreducible Markov chain, with transition rates that satisfy $q_{ij}>0 \iff q_{ji}>0$
- Form a graph for the chain, where states are the nodes, and for each $q_{ij}>0$, there is a directed arc $i \rightarrow j$

Then, if graph is a tree – contains no loops – then Markov chain is reversible

Remarks:

- Sufficient condition for reversibility
- Generalization of one-dimensional birth-death process
Kolmogorov’s Criterion (Discrete Chain)

- Detailed balance equations determine whether a Markov chain is reversible or not, based on stationary distribution and *transition probabilities*.

- Should be able to derive a reversibility criterion based only on the transition probabilities!

- **Theorem D.20**: A discrete-time Markov chain is reversible *iff*.

\[
P_{i_1 i_2} P_{i_2 i_3} \cdots P_{i_{n-1} i_n} P_{i_n i_1} = P_{i_1 i_n} P_{i_n i_{n-1}} \cdots P_{i_3 i_2} P_{i_2 i_1}
\]

for every finite sequence of states: \(i_1, i_2, \ldots, i_n \), and any \(n \).

- **Intuition**: Probability of traversing any loop \(i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_n \rightarrow i_1 \) is equal to the probability of traversing the same loop in the reverse direction \(i_1 \rightarrow i_n \rightarrow \ldots \rightarrow i_2 \rightarrow i_1 \).
Kolmogorov’s Criterion (Continuous Chain)

- Detailed balance equations determine whether a Markov chain is reversible or not, based on stationary distribution and transition rates.
- Should be able to derive a reversibility criterion based only on the transition rates!
- **Theorem 7**: A continuous-time Markov chain is reversible if and only if:
 \[q_{i_1i_2} q_{i_2i_3} \cdots q_{i_{n-1}i_n} q_{i_ni_1} = q_{i_1i_n} q_{i_ni_{n-1}} \cdots q_{i_3i_2} q_{i_2i_1} \]
 for any finite sequence of states: \(i_1, i_2, \ldots, i_n \) and any \(n \)
- **Intuition**: Product of transition rates along any loop \(i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_n \rightarrow i_1 \) is equal to the product of transition rates along the same loop traversed in the reverse direction \(i_1 \rightarrow i_n \rightarrow \cdots \rightarrow i_2 \rightarrow i_1 \)
Kolmogorov’s Criterion (proof)

Proof of Theorem D.20:

- **Necessary:** If the chain is reversible the DBE hold

\[
\pi_1 P_{i_1 i_2} = \pi_2 P_{i_2 i_1} \\
\pi_2 P_{i_2 i_3} = \pi_3 P_{i_3 i_2} \\
\vdots \\
\pi_{n-1} P_{i_{n-1} i_n} = \pi_n P_{i_n i_{n-1}} \\
\pi_n P_{i_n i_1} = \pi_1 P_{i_1 i_n}
\]

\[
\Rightarrow P_{i_1 i_2} P_{i_2 i_3} \cdots P_{i_{n-1} i_n} P_{i_n i_1} = P_{i_1 i_n} P_{i_n i_{n-1}} \cdots P_{i_3 i_2} P_{i_2 i_1}
\]

- **Sufficient:** Fixing two states \(i_1 = i\) and \(i_n = j\) and summing over all states \(i_2, \ldots, i_{n-1}\) we have

\[
P_{i_1 i_2} P_{i_2 i_3} \cdots P_{i_{n-1} i_n} P_{i_n i_1} = P_{i_j} P_{j, i_{n-1}} \cdots P_{i_3 i_2} P_{i_2 i_1} \Rightarrow P_{i_j}^{n-1} P_{j i} = P_{i_j} P_{j i}^{n-1}
\]

Taking the limit \(n \to \infty\)

\[
\lim_{n \to \infty} P_{ij}^{n-1} \cdot P_{ji} = P_{ij} \cdot \lim_{n \to \infty} P_{ji}^{n-1} \Rightarrow \pi_j P_{ji} = P_{ij} \pi_i
\]
Theorem D.21: A discrete-time Markov chain is reversible iff.

\[q_{i_1i_2} q_{i_2i_3} \cdots q_{i_{n-1}i_n} q_{i_ni_1} = q_{i_1i_n} q_{i_ni_{n-1}} \cdots q_{i_3i_2} q_{i_2i_1} \]

for every minimal, finite sequence of states: \(i_1, i_2, \ldots, i_n \)
Example: M/M/2 Queue with Heterogeneous Servers

- M/M/2 queue. Servers A and B with service rates μ_A and μ_B respectively. When the system empty, arrivals go to A with probability α and to B with probability $1-\alpha$. Otherwise, the head of the queue takes the first free server.

- Need to keep track of which server is busy when there is 1 customer in the system. Denote the two possible states by: 1A and 1B.

- Reversibility: we only need to check the loop $0\rightarrow1A\rightarrow2\rightarrow1B\rightarrow0$:

$$q_{0,1A}q_{1A,2}q_{2,1B}q_{1B,0} = \alpha \lambda \cdot \lambda \cdot \mu_A \cdot \mu_B \quad q_{0,1B}q_{1B,2}q_{2,1A}q_{1A,0} = (1-\alpha) \lambda \cdot \lambda \cdot \mu_B \cdot \mu_A$$

- Reversible if and only if $\alpha=1/2$.
Time Reversibility and Burke’s Theorem

- Time-Reversal of Markov Chains
- Reversibility
- Truncating a Reversible Markov Chain
- Burke’s Theorem
- Queues in Tandem
Truncation of a Reversible Markov Chain

Theorem D.22: \(\{X(t)\} \) reversible Markov process with state space \(S \), and stationary distribution \(\{p_j: j \in S\} \). Truncated to a set \(E \subset S \), such that the resulting chain \(\{Y(t)\} \) is *irreducible*. Then, \(\{Y(t)\} \) is reversible and has stationary distribution:

\[
\tilde{p}_j = \frac{p_j}{\sum_{k \in E} p_k}, \quad j \in E
\]

Remark: This is the conditional probability that, in steady-state, the original process is at state \(j \), given that it is somewhere in \(E \)

Proof: Verify that:

\[
\tilde{p}_j q_{ji} = \tilde{p}_i q_{ij} \iff \frac{p_j}{\sum_{k \in E} p_k} q_{ji} = \frac{p_i}{\sum_{k \in E} p_k} q_{ij} \iff p_j q_{ji} = p_i q_{ij}, \quad i, j \in S; i \neq j
\]

\[
\sum_{j \in E} \tilde{p}_j = \sum_{j \in E} \frac{p_j}{\sum_{k \in E} p_k} = 1
\]
Example

Joint process of queue length \((X_1(t), X_2(t))\) is a CTMC.

For (a):
\[
\pi_{n_1, n_2}^{(a)} = (1 - \rho_1) \rho_1^{n_1} (1 - \rho_2) \rho_2^{n_2}
\]

(b) is a truncated version of (a) in the sense \(E = \{(n_1 + n_2) \geq 0: n_1 + n_2 \leq K\}\), thus

\[
\pi_{n_1, n_2}^{(b)} = \frac{(1 - \rho_1) \rho_1^{n_1} (1 - \rho_2) \rho_2^{n_2}}{\sum_{(k_1, k_2) \in E} (1 - \rho_1) \rho_1^{k_1} (1 - \rho_2) \rho_2^{k_2}}
\]
Time Reversibility and Burke’s Theorem

- Time-Reversal of Markov Chains
- Reversibility
- Truncating a Reversible Markov Chain
- Burke’s Theorem
 - Birth-death processes: Poisson departures
- Queues in Tandem
Birth-death process

- \(\{X(t)\} \) birth-death process with stationary distribution \(\{p_j\} \)

- Arrival epochs: points of increase for \(\{X(t)\} \)

 Departure epoch: points of decrease for \(\{X(t)\} \)

- \(\{X(t)\} \) completely determines the corresponding arrival and departure processes
Forward & reversed chains of birth-death processes

- Poisson arrival process: $\lambda_j = \lambda$, for all j
 - Birth-death process called a (λ, μ_j)-process
 - Examples: M/M/1, M/M/c, M/M/∞ queues

- Poisson arrivals \rightarrow LAA: for any time t, future arrivals are independent of $\{X(s): s \leq t\}$

- (λ, μ_j)-process at steady state is reversible: forward and reversed chains are stochastically identical

- \Rightarrow Arrival processes of the forward and reversed chains are stochastically identical
 - \Rightarrow Arrival process of the reversed chain is Poisson with rate λ
 - $+ \text{“the arrival epochs of the reversed chain are the departure epochs of the forward chain”} \Rightarrow \text{Departure process of the forward chain is Poisson with rate } \lambda$
Reversed chain: arrivals after time t are independent of the chain history up to time t (LAA)

=> Forward chain: departures prior to time t and future of the chain \{X(s): s \geq t\} are independent
Burke’s Theorem

Theorem 10: Consider a (λ, μ_j)-process (e.g., those in M/M/1, M/M/c, or M/M/∞ systems). Suppose that the system starts at steady-state. Then:

1. The departure process is Poisson with rate λ
2. At each time t, the number of customers in the system is independent of the departure times prior to t

Fundamental result for study of networks of M/M/* queues, where output process from one queue is the input process of another
Time Reversibility and Burke’s Theorem

- Time-Reversal of Markov Chains
- Reversibility
- Truncating a Reversible Markov Chain
- Burke’s Theorem
- Queues in Tandem
Single-Server Queues in Tandem

- Customers arrive at queue 1 according to Poisson process with rate λ.
- Service times exponential with mean $1/\mu_i$. Assume service times of a customer in the two queues are independent.
- Assume $\rho_i = \frac{\lambda}{\mu_i} < 1$
- What is the joint stationary distribution of N_1 and N_2 – number of customers in each queue?

$$p(n_1, n_2) = (1 - \rho_1)^{n_1} \cdot (1 - \rho_2)^{n_2} = p_1(n_1) \cdot p_2(n_2)$$

- Result: in steady state the queues are independent
Q1 is a M/M/1 queue. At steady state its departure process is Poisson with rate λ. Thus Q2 is also M/M/1.

Marginal stationary distributions:

$$p_1(n_1) = (1 - \rho_1) \rho_1^{n_1}, \quad n_1 = 0, 1, ...$$

$$p_2(n_2) = (1 - \rho_2) \rho_2^{n_2}, \quad n_2 = 0, 1, ...$$

To complete the proof: establish independence at steady state

Q1 at steady state: at time t, $N_1(t)$ is independent of departures prior to t, which are arrivals at Q2 up to t. Thus $N_1(t)$ and $N_2(t)$ independent:

$$P\{N_1(t) = n_1, N_2(t) = n_2\} = P\{N_1(t) = n_1\}P\{N_2(t) = n_2\} = p_1(n_1) \cdot P\{N_2(t) = n_2\}$$

Letting $t \to \infty$, the joint stationary distribution

$$p(n_1, n_2) = p_1(n_1) \cdot p_2(n_2) = (1 - \rho_1) \rho_1^{n_1} \cdot (1 - \rho_2) \rho_2^{n_2}$$

Note: if $N_1(t)$ is not its stationary version, $N_1(t)$ and $N_2(t)$ are NOT independent. The asymptotic result, however, still holds.
Queues in Tandem

- **Theorem:** Network consisting of K single-server queues in tandem. Service times at queue i exponential with rate μ_i, independent of service times at any queue $j \neq i$. Arrivals at the first queue are Poisson with rate λ. The stationary distribution of the network is:

$$p(n_1, \ldots, n_K) = \prod_{i=1}^{K} (1 - \rho_i) \rho_i^{n_i}, \quad n_i = 0,1,\ldots; \ i = 1,\ldots, K$$

- At *steady state* the queues are independent; the distribution of queue i is that of an isolated M/M/1 queue with arrival and service rates λ and μ_i

$$p_i(n_i) = (1 - \rho_i) \rho_i^{n_i}, \quad n_i = 0,1,\ldots$$

- Are the queues independent if not in steady state? Are stochastic processes $\{N_1(t)\}$ and $\{N_2(t)\}$ independent?
Queues in Tandem: State-Dependent Service Rates

- **Theorem 12:** Network consisting of K queues in tandem. Service times at queue i exponential with rate $\mu_i(n_i)$ when there are n_i customers in the queue – independent of service times at any queue $j \neq i$. Arrivals at the first queue are Poisson with rate λ. The stationary distribution of the network is:

$$p(n_1, \ldots, n_K) = \prod_{i=1}^{K} p_i(n_i), \quad n_i = 0, 1, \ldots; i = 1, \ldots, K$$

where $\{p_i(n_i)\}$ is the stationary distribution of queue i in isolation with Poisson arrivals with rate λ.

- **Examples:** $/M/c$ and $/M/\infty$ queues
 - If queue i is $/M/\infty$, then:

$$p_i(n_i) = \frac{(\lambda/\mu_i)^{n_i}}{n_i!} e^{-\lambda/\mu_i}, \quad n_i = 0, 1, \ldots$$
Jackson Networks

- Open Jackson Networks
- Network Flows
- State-Dependent Service Rates
- Networks of Transmission Lines & Kleinrock’s Assumption
- Closed Jackson Networks
Jackson Networks

- Open Jackson Networks
- Network Flows
- State-Dependent Service Rates
- Networks of Transmission Lines & Kleinrock’s Assumption
- Closed Jackson Networks
Networks of ./M/1 Queues

- Network of K nodes; Node i is ./M/1-FCFS queue with service rate μ_i
- External arrivals independent Poisson processes
 - γ_i: rate of external arrivals at node i
- **Markovian routing**: customer completing service at node i
 - is routed to node j with probability r_{ij} or
 - exits the network with probability $r_{i0} = 1 - \sum_j r_{ij}$
- Routing matrix $R = [r_{ij}]$ irreducible \Rightarrow external arrivals eventually exit the system
Jackson Network

- **Definition:** A *Jackson network* is the CTMC \{N(t)\}, with \(N(t)=(N_1(t),\ldots, N_K(t))\) that describes the evolution of the previously defined network, where \(N_i(t) = \#\) of customers at node \(i\)

- Possible states: \(n=(n_1, n_2,\ldots, n_K), n_i=1,2,\ldots, i=1,2,\ldots,K\)

- For any state \(n\), define the following operators:

 \[
 \begin{align*}
 A_i n &= n + e_i & \text{arrival at } i \\
 D_i n &= n - e_i & \text{departure from } i \\
 T_{ij} n &= n - e_i + e_j & \text{transition from } i \text{ to } j
 \end{align*}
 \]

- Transition rates for the Jackson network:

 \[
 \begin{align*}
 q(n, A_i n) &= \gamma_i \\
 q(n, D_i n) &= \mu_i r_{i0} \cdot 1\{n_i > 0\} & i, j = 1,\ldots,K \\
 q(n, T_{ij} n) &= \mu_i r_{ij} \cdot 1\{n_i > 0\}
 \end{align*}
 \]

 while \(q(n, m)=0\) for all other states \(m\)
Jackson’s Theorem for Open Networks

- λ_i: total arrival rate at node i

$$\lambda_i = \gamma_i + \sum_{j=1}^{K} \lambda_j r_{ji}, \quad i = 1, \ldots, K$$

- **Open network**: for some node j: $\gamma_j > 0$
 - Routing matrix is irreducible \Rightarrow Linear system has a unique solution $\lambda_1, \lambda_2, \ldots, \lambda_K$

- **Theorem 13**: Consider a Jackson network, where $\rho_i = \lambda_i/\mu_i < 1$, for every node i. The stationary distribution of the network is

$$p(n) = \prod_{i=1}^{K} p_i(n_i), \quad n_1, \ldots, n_K \geq 0$$

where for every node $i = 1, 2, \ldots, K$

$$p_i(n_i) = (1 - \rho_i) \rho_i^{n_i}, \quad n_i \geq 0$$
Jackson’s Theorem (proof)

- Guess the reverse Markov chain and use Theorem 4

- **Claim:** The network reversed in time is a Jackson network with the same service rates, while the arrival rates and routing probabilities are

\[\gamma_i^* = \lambda_i r_{i0}, \quad r_{ij}^* = \frac{\lambda_j r_{ji}}{\lambda_i}, \quad r_{i0}^* = \frac{\gamma_i}{\lambda_i} \]

- Verify that for any states \(n \) and \(m \neq n \),

\[p(m)q^*(m,n) = p(n)q(n,m) \]

Need to prove only for \(m = A_i n, D_i n, T_{ij} n \). We show the proof for the first two cases – the third is similar

- \(q^*(A_i n, n) = q^*(A_i n, D_i A_i n) = \mu_i r_{i0}^* = \mu_i (\gamma_i / \lambda_i) \)

\[p(A_i n)q^*(A_i n, n) = p(n)q(n, A_i n) \iff p(A_i n)\mu_i (\gamma_i / \lambda_i) = p(n)\gamma_i \iff p(A_i n) = \rho_i p(n) \]

- \(q^*(D_i n, n) = q^*(D_i n, A_i D_i n) = \gamma_i^* = \lambda_i r_{i0} \)

\[p(D_i n)q^*(D_i n, n) = p(n)q(n, D_i n) \iff p(D_i n)\lambda_i r_{i0} = p(n)\mu_i r_{i0} 1\{ n_i > 0 \} \]

\[\iff \rho_i p(D_i n) = p(n) 1\{ n_i > 0 \} \]
Jackson’s Theorem (proof cont.)

- Finally, verify that for any state \(n \):
 \[
 \sum_{m \neq n} q(n,m) = \sum_{m \neq n} q^*(n,m)
 \]

 \[
 \sum_{m \neq n} q(n,m) = \sum_i \gamma_i + \sum_{i,j} \mu_{i,j} 1\{n_i > 0\} + \sum_i \mu_{i,0} 1\{n_i > 0\}
 \]

 \[
 = \sum_i \gamma_i + \sum_i \mu_i \left(\sum_j \left(r_{ij} + r_{i0} \right) \right) \cdot 1\{n_i > 0\}
 \]

 \[
 = \sum_i \gamma_i + \sum_i \mu_i 1\{n_i > 0\}
 \]

 \[
 \sum_{m \neq n} q^*(n,m) = \sum_i \gamma_i^* + \sum_i \mu_i 1\{n_i > 0\} = \sum_i \lambda_i r_{i0} + \sum_i \mu_i 1\{n_i > 0\}
 \]

- Thus, we need to show that \(\sum_j \gamma_j = \sum_i \lambda_i r_{i0} \)

 \[
 \sum_i \lambda_i r_{i0} = \sum_i \lambda_i - \sum_j \sum_i \lambda_i r_{ij} = \sum_i \lambda_i - \sum_i \sum_j \lambda_i r_{ij}
 \]

 \[
 = \sum_i \lambda_i - \sum_j (\lambda_j - \gamma_j) = \sum_j \gamma_j
 \]
Output Theorem for Jackson Networks

- **Theorem 14:** The reversed chain of a stationary open Jackson network is also a stationary open Jackson network with the same service rates, while the arrival rates and routing probabilities are

 \[\gamma_i^* = \lambda_i r_{i0}, \quad r_{ij}^* = \frac{\lambda_j r_{ji}}{\lambda_i}, \quad r_{i0}^* = \frac{\gamma_i}{\lambda_i} \]

- **Theorem 15:** In a stationary open Jackson network, the departure process from the system at node \(i \) is Poisson with rate \(\gamma_i r_{i0} \). The departure processes are independent of each other, and at any time \(t \), their past up to \(t \) is independent of the state of the system \(N(t) \).

- **Remark:** 1) The total arrival process at a given node is not Poisson. The departure process from the node is not Poisson either. However, the process of the customers that exit the network at the node is Poisson. 2) In general, an open Jackson network need not be reversible.
Arrival Theorem in Open Jackson Networks

- The composite arrival process at node i in an open Jackson network has the “PASTA” property, although it need not be a Poisson process.

- Theorem 16: In an open Jackson network at steady-state, the probability that a composite arrival at node i finds n customers at that node is equal to the (unconditional) probability of n customers at that node:

$$p_i(n) = (1 - \rho_i) \rho_i^n, \quad n \geq 0, \quad i = 1, \ldots, K$$

(Proof is omitted)
Jackson Networks

- Open Jackson Networks
- Network Flows
- State-Dependent Service Rates
- Networks of Transmission Lines & Kleinrock’s Assumption
- Closed Jackson Networks
Non-Poisson Internal Flows

- Jackson’s theorem: the numbers of customers in the queues are distributed as if each queue i is an isolated M/M/1 with arrival rate λ_i, independent of all others.

- Total arrival process at a queue, however, need not be Poisson.
 - “Loops” allow a customer to visit the same queue multiple times and introduce dependencies that violate the Poisson property.
 - Internal flows are Poisson in *acyclic* networks.

- Similarly, the departure process from a queue is not Poisson in general.
 - The process of departures that *exit the network* at the node is Poisson according to the output theorem.
Example #1

Example: Single queue with $\mu >> \lambda$, where upon service completion a customer is fed back with probability $p \approx 1$, joining the end of the queue.

The total arrival process does not have independent interarrival times:

- If an arrival occurs at time t, there is a very high probability that a feedback arrival will follow in $(t, t+\delta]$
- At arbitrary t, the probability of an arrival in $(t, t+\delta]$ is small since λ is small

Arrival process consists of bursts, each burst triggered by a single customer arrival.
Jackson Networks

- Open Jackson Networks
- Network Flows
- State-Dependent Service Rates
- Networks of Transmission Lines & Kleinrock’s Assumption
- Closed Jackson Networks
State-Dependent Service Rates

- Service rate at node i depends on the number of customers at that node: $\mu_i(n_i)$ when there are n_i customers at node i
 - But service rate at i does not depend on the # of customers at other nodes
 - E.g, ./M/c and ./M/∞ queues

- **Theorem 17**: The stationary distribution of an open Jackson network where the nodes have state-dependent service rates is

$$p(n) = \prod_{i=1}^{K} p_i(n_i), \quad n_1, \ldots, n_K \geq 0$$

where for every node $i=1,2,\ldots,K$

$$p_i(n_i) = \frac{1}{G_i} \frac{\lambda_i^{n_i}}{\mu_i(1)\cdots\mu_i(n_i)}, \quad n_i \geq 0$$

with normalization constant $G_i = \sum_{n_i=0}^{\infty} \frac{\lambda_i^{n_i}}{\mu_i(1)\cdots\mu_i(n_i)} < \infty$

(Proof follows identical steps with the proof of Theorem 13)
Remark:

- The stationary distribution has the product form; but if the network starts from some arbitrary initial state, the queues are not independent at any finite time.
 - Similar to the example of two M/M/1 queues in tandem (as discussed at the end of Appendix D.3.1 of book R0)
Jackson Networks

- Open Jackson Networks
- Network Flows
- State-Dependent Service Rates
- Networks of Transmission Lines & Kleinrock’s Assumption
- Closed Jackson Networks
Network of Transmission Lines

- **Real Networks:** Many transmission lines (queues) interact with each other
 - Output from one queue enters another queue,
 - Merging with other packet streams departing from the other queues

 => 1) Interarrival times at various queues become strongly correlated with packet lengths; 2) Service times at various queues are not independent
 - Queueing models become analytically intractable

- **Analytically Tractable Queueing Networks:**
 - Independence of interarrival times and service times
 - Exponentially distributed service times
 - Network model: Jackson network
 - “Product-Form” stationary distribution
Kleinrock Independence Assumption

1. Interarrival times at various queues are independent

2. Service time of a given packet at the various queues are independent
 - Length of the packet is randomly selected each time it is transmitted over a network link

3. Service times and interarrival times: independent

- Assumption has been validated with experimental and simulation results – Steady-state distribution approximates the one described by Jackson’s Theorems

- Good approximation when:
 - Poisson arrivals at entry points of the network
 - Packet transmission times “nearly” exponential
 - Several packet streams merged on each link
 - Densely connected network
 - Moderate to heavy traffic load
Jackson Networks

- Open Jackson Networks
- Network Flows
- State-Dependent Service Rates
- Networks of Transmission Lines & Kleinrock’s Assumption
- Closed Jackson Networks
Closed Jackson Networks

- Closed Network: K nodes with exponential servers
 - No external arrivals ($\gamma_i=0$), no departures ($r_0=0$)
 - Fixed number M of circulating customers

- Steady-state distribution is of “product-form” type (as shown later)
Closed Jackson Network (contd.)

- Aggregate arrival rates

\[\lambda_i = \sum_{j=1}^{K} \lambda_j r_{ji}, \quad i = 1, \ldots, K \]

- The arrival rates are “relative” arrival rates – visit ratios between states

 - No unique solution, and can only be determined up to a multiplicative constant

 - Use an additional equation to obtain unique solution to the above system, e.g.

 - Set \(\lambda_j = 1 \), for some node \(j \)

 - Set \(\lambda_j = \mu_j \), for some node \(j \)

 - Set \(\lambda_1 + \lambda_2 + \ldots + \lambda_K = 1 \)
Closed Jackson Network (contd.)

- Let \(x_i \) be the number of customers at station \(i \), at steady state
 - Random variables \(x_1, x_2, \ldots, x_K \) are not independent – their sum must be equal to \(M \)

- The state \(x=(x_1, x_2, \ldots, x_K) \) of the closed network can take values \(n=(n_1, n_2, \ldots, n_K) \), with
 \[
 n_i \geq 0 \quad \text{and} \quad |n| = \sum_{i=1}^{K} n_i = M
 \]
 - Let \(\mathcal{R}(M) \) denote the set of all such states

- Jackson’s theorem for closed networks gives the stationary distribution
 \[
p(n) = P\{x = n\} = P\{x_1 = n_1, \ldots, x_K = n_K\}
 \]