The hand that hath made you fair hath made you good.
--- William Shakespeare

Acknowledgement: this lecture is partially based on the slides of Dr. Larry Peterson
Outline (Quality of Service)

- Real-time Applications
- QoS support
 - Integrated Services
 - Differentiated Services
Outline

- Real-time Applications
- QoS support
 - Integrated Services
 - Differentiated Services
Real-time Applications

- Require “deliver on time” assurances
 - must come from inside the network (because end-to-end retransmission may render the delay to be too huge that data becomes useless even if delivered)

- Example application (audio)
 - sample voice once every 125us
 - each sample has a playback time
 - packets experience variable delay in network
 - add constant factor to playback time: playback point
Playback Buffer

- Sequence number
- Time
- Packet generation
- Network delay
- Buffer
- Packet arrival
- Playback
Example Distribution of Delays (of an Internet connection)
Taxonomy of real-time applications

Applications

- Elastic
 - Non real-time data

Real time

 - Intolerant
 - Industrial control
 - Tolerant
 - Audio, video, ...

Nonadaptive

 - Rate adaptive
 - Video

Adaptive

 - Delay adaptive
 - Audio
Approaches to QoS support

- Objective: to provide different service to different applications

- Two broad categories
 - *Fine-grained* approaches: QoS support per individual applications/flows
 - Integrated services
 - *Coarse-grained* approaches: QoS support per classes of data or aggregated traffic
 - Differentiated services
Outline

- Real-time Applications

- QoS support
 - Integrated Services
 - Differentiated Services
Integrated Services (IntServ)

- Two service classes
 - Guaranteed: for intolerant applications
 - controlled-load: for tolerant, adaptive applications
 - To emulate a lightly loaded network, using WFQ to isolate controlled load traffic from others

- Mechanisms
 - Flowspecs
 - Admission control
 - Reservation protocol
 - Packet classifying & scheduling
Flowspec

- **Tspec**: describes flow’s traffic characteristics
 - average bandwidth + burstiness: *token bucket* filter
 - must have a token to send a byte; must have \(n \) tokens to send \(n \) bytes
 - token rate \(r \), bucket depth \(B \)
 - start with no tokens
 - accumulate tokens at rate of \(r \) per second
 - can accumulate no more than \(B \) tokens

- **Rspec**: describes service requested from network
 - guaranteed: delay target
 - controlled-load: none
Admission Control

- Decide if a new flow can be supported
- Answer depends on service class

- Not the same as *policing*
 - Admission control is applied on a per-flow basis
 - Policing is applied on a per-packet basis to make sure a flow abides by the agreement
Reservation Protocol

- Called *signaling* in ATM

- Proposed Internet standard: RSVP (resource reservation protocol)
 - Consistent with the robustness of today’s connectionless model
 - Uses soft state (refresh periodically)

- Designed to support multicast
- Receiver-oriented
 - Different from circuit switching which is sender-oriented/initiated in “resource reservation”

- Two messages: PATH and RESV
 - Source transmits PATH messages every 30 seconds
 - Destination responds with RESV message

- Merge requirements in case of multicast
RSVP Example
RSVP vs. ATM (Q.2931)

- **RSVP**
 - receiver generates reservation
 - soft state (refresh/timeout)
 - separate from route establishment
 - QoS can change dynamically
 - thanks to soft-state and thus periodic update
 - receiver heterogeneity

- **ATM**
 - sender generates connection request
 - hard state (explicit delete)
 - concurrent with route establishment
 - QoS is static for life of connection
 - uniform QoS to all receivers
 - Because it is sender-centric
Packet classifying & scheduling

- Classification: associate each packet with the appropriate reservation
 - IPv4: by <source & destination addresses, source & destination ports, protocol number>
 - IPv6: can also by *FlowLabel*

- Scheduling: manage queues so each packet receives the requested service
Outline

- Real-time Applications
- QoS support
 - Integrated Services
 - Differentiated Services
Differentiated Services (DiffServ)

- Problem with IntServ: unscalable to maintain per-flow state

- Idea: segregate packets into a small number of *classes*
 - e.g., premium vs. best-effort

- Packets marked according to class at edge of network
- Core routers implement some per-hop-behavior (PHB)
Examples of DiffServ PHB

- Expedited Forwarding (EF): real-time
 - rate-limit EF packets at the edges, so as not to exceed network capacity
 - PHB implemented with class-based priority queues or WFQ

- Assured Forwarding (AF): reliability
 - customers sign service agreements with ISPs
 - edge routers mark packets as being “in” or “out” of profile
 - core routers run RIO: RED with in/out
 - *out* packets are dropped earlier than *in* packets
Summary of congestion control & resource allocation

- Queuing Discipline
- Congestion control
 - Reacting to Congestion
 - Avoiding Congestion
- QoS support
 - Integrated Services
 - Differentiated Services
Discussion

- TCP in wireless networks?
 - Packet loss may also be due to link unreliability, in addition to queue overflow

- Congestion control and QoS in
 - wireless networks in general
 - sensor networks
 - heterogeneous networks involving both wireline and wireless communications
Further readings

- An early overview

- Scheduling

- Congestion control
 - V. Jacobson, *Congestion Avoidance and Control*, ACM SIGCOMM’88
Further readings (contd.)

- **IntServ**
Further readings (contd.)

- **Diffserv**
 - B. Davie et al., *An Expedited Forwarding PHB (per-hop behavior)*, RFC 3246, Mar. 2002
Assignments

- Exercise #5
 - Chapter 6: Exercises 6, 10, 16, 49